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1 Introduction

Diversification effects in operational risk modelling are crucial, in particular when capital computations are
performed. Though the Basel II consultative paper CP3 is voluntarily vague about the correlation which
should be expected between (say) internal fraud and damage to physical assets, common sense suggests that
operational risk events might be, at least partially, decorrelated. Indeed, that all severe operational risk
losses occur simultaneously and systematically in the same year is rather dubious and is hardly supported
by empirical evidence.

Besides if perfect correlation across risk types or across business lines was to be accepted, capital charges
by risk types or business lines should have to be summed, leading in some cases to much higher a capital
charge than in the Standard Approach as proposed by Basel II. As regulators intend to promote the use of the
most advanced methodology (Advanced Measurement Approach or AMA), at least for internationally active
banks, the perfect correlation hypothesis would be thus clearly disincentive and would go against regulators’
stated goals.

The vagueness of the consultative paper is quite understandable as it is a difficult task to assess the
level of correlation to be expected between different risk types and/or business units. So far banks are quite
short of historical data, which implies that reliable estimations of correlation can hardly be extracted from
historical data. Nevertheless, as this paper aims to demonstrate, this difficulty can be overcome by using
data-independent theoretical calculations and secondly by validating these theoretical results with empirical
simulations. This is actually the main goal of this paper. Moreover, this paper proves that Loss Distribution
Approach-like models (LDA) cannot, by construction, show high levels of correlation between aggregate losses
corresponding to various risk type × business line classes. By this, we do not suggest in any sense that LDA
models are ill-suited for operational risk modelling. On the contrary we firmly believe that LDA models
should be at the root of the AMA method. We only stress that there are strong arguments in favor
of low levels of correlation between aggregate losses, suggesting that capital charge summation is
exagerately conservative. As a result we are confident that low correlations will be justifiable vis-à-vis of our
supervisors, which will eventually provide banks with strong incentives to use advanced methods.

The paper is organized as follows. The first section reminds the basic roots of the standard LDA model
as it is currently understood in operational risk modelling. In the second section we show how correlation
can be introduced in the standard LDA model. We then derive simple calculations to assess the level of
correlation which can be obtained in the framework of standard LDA models. Finally we provide empirical
simulations partly based on Crédit Lyonnais historical loss data and we give an evaluation of the level of
correlation.
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antoine.frachot@creditlyonnais.fr or thierry.roncalli@creditlyonnais.fr
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2 The standard LDA model

This section aims at reminding the basic features of the standard LDA model. By “standard LDA model”,
we mean the LDA model as it is currently understood by operational risk communauty and as it is planned
to be used in practice. Conversely appendix B provides an example of a non-standard LDA model.

2.1 Main assumptions

Following the usual LDA methodology, the aggregate loss is naturally defined as a random sum of individual
losses:

L =
N∑

n=1

Xn = X1 + · · ·+ XN

where L is the aggregate loss, N is the annual number of losses (i.e. frequency of events) and Xn are loss
amounts (i.e. severity of event). In the course of this paper, “aggregate loss” will refer to the loss incurred
in a “class of risk”, where a class designates one cell among the 7 risk types × 8 business lines cells defined
by the consultative paper.

Accordingly aggregate losses result from two distinct sources of randomness (i.e. frequency and severity)
which both have to be modelled. In essence the LDA model as used in operational risk or in actuarial sciences
assumes the three following assumptions within each class of risk:

(i) N and (X1, X2, . . .) are independent random variables,

(ii) X1, X2, . . . is a set of independent random variables,

(iii) and X1, X2, . . . follow the same marginal distribution.

The first assumption means that frequency and severity are two independent sources of randomness. It is
obviously debatable as we may imagine that the number of losses and their corresponding amounts both
move together, i.e. are partly correlated. As an example, Appendix B proposes a tractable extension of the
LDA model allowing for frequency and severity correlation. Assumptions 2 and 3 mean that two different
losses within the same homogeneous class are independent and identically distributed. Provided that data
collection processes are reliable and that homogeneity can be assumed, the two last assumptions are quite
reasonable. In particular the granularity imposed by the consultative paper (i.e. 7 risk types × 8 business
lines, see Annexes 6 and 7 in [3]) aims to ensure that assumption (iii) is satisfied.

However even if some extensions are proposed in Appendix B, we prefer to focus on the standard LDA
framework, i.e. a model which satisfies the three previous assumptions, because of the following reasons:

• first the standard LDA as just defined is the usual framework which has been adopted by the insurance
industry for a long time at their satisfaction1;

• secondly standard LDA models are the kind of models which are used in practice and which are actually
implemented in existing commercial softwares;

• third, any extension of the standard LDA model may degenerate into an over-sophisticated model in
comparison with the paucity of historical data which are actually available for its calibration.

1The previous assumptions are standard in Actuarial Sciences. They define the collective risk model (see Definition 1.14
and Chapter 4 in Klugman et al. [10]).
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2.2 Capital charge computations

Let us now turn to capital charge computations under the previous assumptions. We denote G the distri-
bution of the aggregate loss L. This distribution is a compounded distribution since it is a mixture of the
severity and frequency distributions. In the sequel it will be referred to as the aggregate loss distribution.
How compounding is done is now common practice and does not need to be detailed any further at this
stage of exposition.

The last consultative paper CP3 defines the regulatory capital requirement as follows:

Definition 1 (Basel Committee on Banking Supervision [3]) The regulatory capital requirement (or
Capital-at-Risk) is the sum of expected loss (EL) and unexpected loss (UL) for a one year holding period and
a 99.9 percent confidence interval.

This definition implies that frequency distribution must be understood on a yearly basis. In the spirit of
a Value-at-Risk-like measure, the regulatory capital requirement K is the 99.9% percentile of distribution of
the aggregate loss:

K = G−1 (99.9%)

meaning that one expects to incur a loss higher than K (“in average”) once every 1000 years2.

The total loss L of the bank is then the sum of aggregate losses for each business line × loss type class.
Let H be the number of classes (where H = 7× 8 in the Basel II context). Therefore:

L =
H∑

h=1

Lh

where Lh is the aggregate loss corresponding to the hth class. With natural notations the regulatory capital
requirement for each business line/loss type class is then:

Kh = G−1
h (99.9%)

2.3 Diversification effects according to CP3

At this point the main issue concerns the aggregation of the K capital charges in order to obtain the
regulatory capital requirement of the bank as a whole. The Basel Committee statement is the following:

“Risk measures for different operational risk estimates must be added for purposes of cal-
culating the regulatory minimum capital requirement. However, the bank may be permitted to
use internally determined correlations in operational risk losses across individual operational risk
estimates, provided it can demonstrate to a high degree of confidence and to the satisfaction
of the national supervisor that its systems for determining correlations are sound, implemented
with integrity, and take into account the uncertainty surrounding any such correlation estimates
(particularly in periods of stress). The bank must validate its correlation assumptions.” (§ 629
(d) page 126 in [3]).

Following the lines of the consultative paper and using our notations, it is thus first suggested to sum the
H capital charges, i.e.:

K =
H∑

h=1

Kh (1)

2The return period is the mean of the duration between two consecutive exceeding of the Capital-at-Risk. Because the
distribution of the excess event {L > K} is geometric with probability Pr {L > K}, it comes that the return time is

t̆ (K) =
1

Pr {L > K} =
1

1−G (G−1 (0.999))
= 1000
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As it is now well-known this methodology assumes implicitly that aggregate losses Lh are
perfectly correlated (see proof in Appendix A). In some sense it would be exactly as if everything
went wrong simultaneously for all business line × risk type classes. In mathematical terms, it would imply
that both frequency and severity of losses are driven by one single source of randomness instead of possibly
H = 7× 8 independent sources. Even if we consider that the “real world” is anywhere in between 1 and 56
sources of randomness, we strongly believe that the one-single-source case is too much a conservative way of
capturing losses dependency. The following technical note provides a numerical illustration of this point.

Remark 1 We note t̆1, . . . , t̆H the return times of the different Capital-at-Risk. Suppose that the different
aggregate losses Lh are perfectly correlated. The return time of the Capital-at-Risk (1) for the whole bank is

t̆ =
1

Pr {L1 > K1, . . . , LH > KH}
= min

(
t̆1, . . . , t̆H

)

Accordingly, the return time is effectively equal to 1000 years. If instead Lk are actually independent, t̆ is
now equal to:

t̆ =
H∏

h=1

t̆h

leading in this case to a return time of 1000H years instead of 1000. With only two independent classes,
we already obtain a return time corresponding to a 99,9999% confidence level! Finally the general case is
somewhere in between, that is:

min
(
t̆1, . . . , t̆H

)
< t̆ <

H∏

h=1

t̆h

It is worth stressing that the method of aggregation (1) is therefore disincentive when aggregated losses are
actually not perfectly correlated (which is the most likely case in practice): the more granular the bank risk
measurement system is, the bigger the global capital charge. As a result banks would have no incentive
to refine their risk measurement granularity.

3 Dependence and diversification effects in the standard LDA model

In the previous section we suggested that reality was somewhere in between perfect correlation and full-
independence (between two distinct classes of losses). In practice one has to be more precise since capital
charge computations require to use some correlation value whose soundness (following the words of the
consultative paper) has to be demonstrated with a high degree of confidence. This issue has been adressed
in Frachot et al. [8] whose lines of discussion are reminded in the sequel.

Before that, it is necessary to clarify which correlation we are talking about since each class of losses
is driven by two elementary sources of randomness, i.e. frequency and severity. In this respect correlation
between aggregate losses may result from correlation between frequencies or between severities or between
both. For ease of exposition, we restrict our discussion to only two classes of risk as the lines of reasoning
can be extended easily to more than two classes. Let us note L1 and L2 the two aggregate losses with the
following additional notations:

L = L1 + L2

=
N1∑

n=1

Xn

︸ ︷︷ ︸
L1

+
N2∑

m=1

Ym

︸ ︷︷ ︸
L2

where L is the global aggregate loss (i.e. at the bank’s level).
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3.1 Frequency correlation

We refer to frequency correlation when annual frequencies N1 and N2 are not independent variables. In
practice it means that we may observe that, historically, the number of (say) external fraud events is high
(respectively low) when the number of (say) internal fraud events is also high (respectively low). It likely
happens when both frequencies N1 and N2 share common dependence with respect to some variables such
as gross income, economic cycle, size of business etc. Empirically frequency correlation could be evidenced
and measured by computing the historical correlation between past frequencies of events, provided of course
that data are recorded for a sufficiently long period of time.

3.2 Severity correlation

On the other hand severity correlation is more difficult to tackle in the context of the LDA model.
Mathematically it would mean that loss Xn - randomly drawn from the first class of events - and Ym - drawn
from the second one - are not independent with one another. It may be observed when (say) internal fraud
loss amounts are high (respectively low) when (say) external fraud loss amounts are high (respectively low).
Empirically it could be evidenced if for example mean loss amounts of two classes are correlated over time.

On the other hand, a basic feature of actuarial models requires to assume that individual losses are jointly
independent within one specific business line/risk type class. Therefore it is conceptually difficult
to assume simultaneously severity independence within each class and severity correlation
between two classes. It is also mathematically impossible in general but by chance.

Remark 2 Indeed the covariance between two losses belonging to the same class, i.e. cov (Xn, Xm) can be
decomposed as:

cov (Xn, Xm) = E [cov (Xn, Xm | Yp)] + cov (E [Xn | Yp] ,E [Xm | Yp])

for any loss Yp coming from another class. Both terms are different from zero under the assumption of
non-zero correlation between losses from two distinct classes, the last term being always positive. As a result,
zero-correlation between two losses within the same class, i.e. cov (Xn, Xm), occurs only by chance and
therefore never holds in practice.

If one wishes to draw some operational conclusions from the previous discussion, we should say that
adding correlation between frequencies of events is quite an easy task and does not destroy the very nature
of the LDA model. In particular it does not change the way capital charges are computed for each class.
Therefore this type of correlation can be taken into account at minimal cost. On the contrary correlation
between loss amounts necessarily alters, in a susbtantial extent, the basic foundations of the standard LDA
model and requires to build an entirely new family of models, whose an example is given in the appendix.
Unfortunately such an extension is far away from what is reasonably feasible considering the data we currently
dispose of.

3.3 Aggregate loss correlation

According to previous subsections, we now suppose that aggregate loss correlation is fundamentally
conveyed by the underlying correlation between frequencies:

cor (N1, N2) 6= 0
cor (X,Y ) = 0

}
⇒ cor (L1, L2) 6= 0

As said before, it is the simplest and cheapest way to add correlation between aggregate losses. We now
address the issue of the extent by which frequency correlation translates into aggregate losses correlation.

As a first trivial result, it is clear that:

cor (L1, L2) ≤ cor (N1, N2)
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Furthermore we expect that, even with strong frequency-correlation (i.e. cor (N1, N2) close to one), aggregate
losses may show low level of correlation. In addition one may also guess that it is particularly true for
high severity events since severity-independence likely dominates frequency-correlation. This point will be
confirmed in the next section.

This remark is worth being stressed as the correlation considered by the Basle Committee is unam-
bigously the aggregate loss correlation since it is this correlation which is used when capital charges are to
be aggregated. Therefore there is a risk of misunderstandings between banks and national supervisors: the
fact that a bank uses a low aggregate loss correlation does not mean that the dependence in the LDA model
(as measured here by the frequency correlation) is low.

4 Empirical findings about correlation between aggregate losses

This section aims to investigate how and in what extent frequency correlation generates aggregate loss
correlation. Empirical simulations, partly based on Credit Lyonnais data, will then be provided.

Here we restrict ourselves to the case where frequencies are correlated while severities are not. Accordingly
any correlation between two aggregate losses is conveyed through frequency correlation, consistently with the
arguments developped in the previous section. In this context, we can easily compute the correlation between
two aggregate losses associated to two classes. Straightforward calculations give the following formula for
the covariance:

cov (L1, L2) = E [L1L2]− E [L1]E [L2]

= E

[
N1∑

n=1

Xn

N2∑
m=1

Ym

]
− E

[
N1∑

n=1

Xn

]
E

[
N2∑

m=1

Ym

]

= (E [N1N2]− λ1λ2)E [X]E [Y ]

and the correlation:

cor (L1, L2) =
(E [N1N2]− λ1λ2)√

λ1λ2

× E [X]E [Y ]√
E [X2]E [Y 2]

(2)

= cor (N1, N2)× η (X)× η (Y ) (3)

by noting η the function:

η (X) =
E [X]√
E [X2]

Simple calculations show that:

η (X) =
E [X]√

σ2 [X] + E2 [X]

=
1√

1 + c2 (X)
≤ 1

with:

c2 (X) =
σ2 [X]
E2 [X]

provided that X is a positive random variable, which is assumed here as X is homogeneous to a loss amount.
As a result, aggregate loss correlation is always lower than frequency correlation:

0 ≤ cor (L1, L2) ≤ cor (N1, N2) ≤ 1

In particular, should frequency correlations be equal to 1, i.e. perfect correlation between N1 and N2,
the resulting correlation between aggregate losses would be significantly lower than 1. It is especially true
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when severity distributions are fat-tailed, i.e. high-severity risk. Thus for high severity risk types (c À 1),
aggregate loss correlations may be very small even if the frequency correlation is high. Conversely aggregate
loss correlations are closed to frequency correlation only when the variance of losses is small in comparaison
with the mean of losses. This is typically what we have in mind for high frequency - low severity risk . In
Figure 1, we report the upper bound (when cor (N1, N2) is equal to one) of the aggregate loss correlation (in
%) with respect to the coefficient of variation c(X).

Figure 1: Upper bound of the aggregate loss correlation (in %)

Let us now consider the case where severity distributions are lognormal: X ∼ LN (µX , σX) and Y ∼
LN (µY , σY ). We have:

η (X) = e−
1
2 σ2

X

and:

cor (L1, L2) = cor (N1, N2)× exp
(
−1

2
σ2

X − 1
2
σ2

Y

)

The correlation between the aggregate losses is then a very simple formula which depends only on the
frequency correlation and the standard deviation of the logarithm of the losses. According to our previous
discussion, aggregate loss correlations are non-increasing functions of parameter σ. The aggregate loss
correlation is then a decreasing function of the kurtosis or the magnitude of the tail of the distribution. In
Figure 2, we report the upper bound (when cor (N1, N2) is equal to one) of the aggregate loss correlation (in
%) with respect to the parameters σX and σY . To give a clearer idea of where we are in practice, we have
indicated in Figure 2 the area corresponding to Credit Lyonnais data. Because σ > 1.5 for all severity
distributions, the maximum correlation is less than 4%.

5 Conclusion

This paper has demonstrated that aggregate losses are necessarily low as long as we remain under the
standard assumptions of LDA models. Moreover empirical findings show that the correlation between two
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Figure 2: Upper bound of the correlation (in %) between two aggregate losses when individual losses are
lognormal distributed

aggregate losses is typically below 5%, which opens a wide scope for large diversification effects, much larger
than those the Basel Committee seems to have in mind. In other words, summing up capital charges is in
substantial contradiction with the type of correlation consistent with the standard LDA model.

Obviously nothing prevents from extending the standard LDA model to more general a model where
resulting correlations would be higher. It would require to allow frequency and severity to be correlated
with one another and within a risk type × business line class, which is a clear departure from the standard
LDA model. Roughly speaking, it would mean that when losses come at a high frequency, their severities
are also (in average) higher, and reciprocally. In Appendix B, we explore this kind of model in the simplest
possible way. However, even though this kind of correlation between frequency and severity can make sense
in practice, this cannot be done but at the expense of model tractability, and the extended model thus
obtained is far out of reach of what current databases and state-of-the-art technology can cope with. Above
all, our preliminary computations show that, even in this highly-correlated model, the resulting correlation
between aggregate losses is probably not higher than 10%.

We finally propose the following simplified formula for the global capital charge:

K = EL+

√√√√
H∑

i,j=1

ρi,j (Ki − EL i)× (Kj − ELj)

where ELh is the expected loss of the hth class. According to our previous results, we suggets to take
ρi,j (i 6= j) as a constant not higher than 5%-10%. Obviously this formula should be computed with the
constraints imposed by the Basel Committee concerning the way subsidiaries should be taken into account3.

3

“Since experience has shown that capital is generally not freely transferable within a banking group, especially
during times of stress, each banking subsidiary within the group must be adequately capitalised on a stand-alone
basis.” (Principle 3 page 3 in [4]).
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A Aggregation of quantiles and perfect correlation

We consider two random variables L1 et L2. Let G1 and G2 be the distributions of L1 and L2. The capital
charges for a confidence level α are respectively K1 (α) = G−1

1 (α) and K2 (α) = G−1
2 (α). We would like

to aggregate these two capital charges, that is we would like to compute the capital charge of L = L1 + L2.
Let K1+2 (α) be the capital charge defined by inf {x : Pr {L1 + L2 ≤ x} ≥ α}. Let G1+2 be the distribution
of L = L1 + L2. We have

G1+2 (x) =
∫∫

x1+x2≤x

dG1+2 (x1, x2) =
∫∫

x1+x2≤x

dC (G1 (x1) ,G2 (x2))

The capital charge K1+2 (α) does not depend only one the margins, but on the copula C between L1 and
L2 too.

We consider the case of the upper Fréchet copula C = C+. We suppose that G1 and G2 are continuous.
Following the comonotony definition, we have L2 = G−1

2 (G1 (L1)). Let $ the function defined by x 7→
x + G−1

2 (G1 (x)). We have

α = Pr {L1 + L2 ≤ K1+2 (α)}
= E [1 {$ (L1) ≤ K1+2 (α)}]
= G1

(
$−1 (K1+2 (α))

)

We deduce that K1+2 (α) = $
(
G−1

1 (α)
)

and we obtain the following result:

K1+2 (α) = G−1
1 (α) + G−1

2

(
G1

(
G−1

1 (α)
))

= G−1
1 (α) + G−1

2 (α)
= K1 (α) + K2 (α)
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Thorem 1 The aggregation principle which consists in summing up all the individual capital charges cor-
responds to the case where the dependence between the random losses is the upper Fréchet copula C+ (or in
other words when the random losses are perfectly correlated). In this case, we do not face to two source of
randomness but only one:

L = $ (L1)

B Correlation between frequency and severity

We suppose now that X1, X2, . . . are conditionnally independent to N . We have X | N ∼ LN (
µ (N) , σ2 (N)

)

with µ (N) = µ+αN and σ2 (N) = σ2+β×N . Because E
[
ecN

]
= eλ(ec−1), we have E [X] = eµ+ 1

2 σ2
e
λ

�
eα+ β

2 −1

�
and E

[
X2

]
= e2µ+2σ2

eλ(e2α+2β−1). We deduce that σ
[
X2

]
= e2µ+σ2

(
eσ2

eλ(e2α+2β−1) − e
2λ

�
eα+ β

2 −1

�)
.

For the aggregate loss, we need some intermediare results. We have E
[
NecN

]
= λeceλ(ec−1) and E

[
N2ecN

]
=(

λec + λ2e2c
)
eλ(ec−1). It comes that

E [L] = λeµ+ 1
2 σ2

eα+ β
2 e

λ

�
eα+ β

2 −1

�
and

E
[
L2

]
= e2µ+σ2 (

λe2α+β + λ2e4α+2β
)
eλ(e2α+β−1) − λe2µ+σ2

e2α+βeλ(e2α+β−1) +

λe2µ+2σ2
e2α+2βeλ(e2α+2β−1)

We deduce that

σ
[
L2

]
= λe2µ+σ2

e2α+β

(
λe2α+βeλ(e2α+β−1) + eσ2+βeλ(e2α+2β−1) − λe

2λ

�
eα+ β

2 −1

�)

For the covariance, we have E [L1L2] = eµ1+
1
2 σ2

1eµ2+
1
2 σ2

2E
[
N1N2e

α1N1+
β1
2 ×N1eα2N2+

β2
2 ×N2

]
. We suppose

that (N1, N2) have jointly a bivariate Poisson distribution (Johnson et al. [9]). It means that N1 = N11+N12

and N2 = N22 + N12 where N11, N12 and N22 are mutually independent Poisson random variables with
parameters λ11, λ12 and λ22. The correlation between N1 and N2 is λ12√

(λ11+λ12)(λ22+λ12)
. Given values for

λ1, λ2 and cor (N1, N2), it comes that λ11 = λ1 − cor (N1, N2)
√

λ1λ2, λ22 = λ2 − cor (N1, N2)
√

λ1λ2 and
λ12 = cor (N1, N2)

√
λ1λ2. It comes that

E [L1L2] = eµ1+
1
2 σ2

1eµ2+
1
2 σ2

2 × e
λ11

�
eα1+

β1
2 −1

�
+λ22

�
eα2+

β2
2 −1

�
+λ12

�
eα1+α2+

β1+β2
2 −1

�
×[

λ11λ22e
α1+α2+

β1+β2
2 + λ22λ12e

α1+2α2+
β1
2 +β2 + λ11λ12e

2α1+α2+β1+
β2
2 +

λ12e
α1+α2+

β1+β2
2 + λ2

12e
2α1+2α2+β1+β2

]

We finally obtain

cor (L1, L2) = e
λ1

�
eα1+

β1
2 −1

�
+λ2

�
eα2+

β2
2 −1

� [
e
cor(N1,N2)

√
λ1λ2

�
eα1+α2+

β1+β2
2 −eα1+

β1
2 −eα2+

β2
2 +1

�
×

{√
λ1λ2 + cor (N1, N2)

(
1 + λ1

(
eα1+

β1
2 − 1

)
+ λ2

(
eα2+

β2
2 − 1

))

√
λ1λ2 cor2 (N1, N2)

(
1− eα1+

β1
2 − eα2+

β2
2 + eα1+α2+

β1+β2
2

)}
−

√
λ1λ2

]
×

2∏

i=1

(
λie

2αi+βieλ(e2αi+βi−1) + eσ2
i +βieλ(e2αi+2βi−1) − λie

2λ

�
eαi+

βi
2 −1

�)−1/2
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The correlations obtained with this framework are larger than the previous ones. However, they remain small.
To give an idea of the level of correlations, we have computed the correlation (in %) with Crédit Lyonnais
risk measurement system. For that, we have introduced a parameter c which represents the proportion of the
mean and the variance of the logarithm of X explained by the Poisson random variable4. Figure 3 represents
the maximum correlation, Figure 4 corresponds to the second largest correlation whereas we have reported
the minimum correlation in Figure 5. We remark that for acceptable values of c and cor (N1, N2) – that is
c ≤ 50% and cor (N1, N2) ≤ 50% – the maximum correlation is 18% ! And if we are interested in the mean
correlation, it is equal to 8% in the worst case (c = 100% and cor (N1, N2) = 100%).

Figure 3: Maximum correlation (in %) with Crédit Lyonnais risk measurement system

4To be more explicit, let us introduce λLDA, µLDA and σLDA the estimates obtained with the LDA compound Poisson
lognormal model. The parameters λ, µ, α, σ and β are such that

λ = λLDA

µ = (1− c) µLDA

α = c
µLDA

λLDA

σ =
q

(1− c) σ2
LDA

β = c
σ2
LDA

λLDA

We verify that E [µ (N)] = µLDA and E �σ2 (N)
�

= σ2
LDA.
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Figure 4: Second largest correlation (in %) with Crédit Lyonnais risk measurement system

Figure 5: Minimum correlation (in %) with Crédit Lyonnais risk measurement system
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Figure 6: Mean correlation (in %) with Crédit Lyonnais risk measurement system
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