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Abstract

In this paper, we review the use of copulas for multivariate survival modelling. In particular, we study
properties of survival copulas and discuss the dependence measures associated to this construction. Then, we
consider the problem of competing risks. We derive the distribution of the failure time and order statistics.
After having presented statistical inference, we finally provide financial applications which concern the life
time value, the link between default, prepayment and credit lifetime, the measure of risk for a credit portfolio
and the pricing of credit derivatives.
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1 Introduction

The overall purpose of this paper is to present a copula approach to multivariate survival modelling. This is not
the first time that copulas are used in survival analysis. They appear implicitly in Clayton [1978], Hougaard
[1986a,1986b], Marshall and Olkin [1988] and Heckman and Honoré [1989] or more explicitly in Oakes
[1989], Bagdonavicius, Malov and Nikulin [1998,1999], Shih and Louis [1995] and Bandeen-Roche and
Liang [1996]. In what follows, we try to unify these different works and to propose a systematic approach based
on survival copulas. We will see that copulas provide a general framework, that could encompass many models
generally presented without links between them (Hougaard [1987]).

What is the fundamental difference between unvariate and multivariate survival data? As Hougaard [2000]
says, “the term multivariate survival data covers the field where independence between survival times cannot be
assumed”. We have also to specify the joint distribution of the survival times or the corresponding multivariate
survival function. In general, it is done in two steps. First, we consider the univariate data separately in order to
characterize the specific properties of the survival times. Then, we search to describe the joint behaviour of the
survival times by taking into account the properties exhibited in the first step. Copulas are also a natural tool
for constructing families of multivariate survival function with given margins. For example, Clayton [1978] is
one of the first to propose a bivariate association model for survival analysis. Without knowing the concept of
copulas, his model assumes a copula.

The paper is organized as follows. In section two, we study properties of survival copulas and discuss the
dependence measures associated to this construction. Then, we consider the modelling of competing risks. In
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particular, we derive the distribution of the failure time and other order statistics. Section fourth presents
statistical inference. Finally in section five, we provide different applications in finance.

2 Multivariate survival models and copulas

2.1 Some definitions

Let T denote a survival time with distribution F. The survival function is given by S (t) = Pr {T > t} = 1−F (t).
It is also known as the survival rate. The density f of T is then equal to ∂1F or equivalently −∂1S (t). Generally
in survival modelling, one of the main concepts is the hazard rate or risk function λ (t) defined as follows
(Lancaster [1990])

λ (t) = lim
∆→0+

1
∆

Pr {t ≤ T ≤ t + ∆ | T ≥ t} (1)

This function can be interpreted as the instantaneous failure rate assuming the system has survived to time t.
Another expressions of λ are

λ (t) = −∂1S (t)
S (t)

=
f (t)
S (t)

(2)

Let us define the hazard function Λ (t) as the integral of λ between 0 and t

Λ (t) =
∫ t

0
λ (s) ds (3)

Λ is known under different names: the cumultative hazard function (Andersen, Borgan, Gill and Keiding
[1993]), the integrated hazard function (Hougaard [1999]), etc. The link between Λ and S is done by the
following relationship

S (t) = exp (−Λ (t)) (4)

Another important concept is the “baseline” hazard function λ0 (t) (Frees and Valdez [1998]). Cox propor-
tional hazard model is generally used to incorporate explanatory variables X in survival distributions (Cox
[1972]). The hazard rate takes then the following expression

λ (t) = exp
(

β>X
)

λ0 (t) (5)

Moreover, we note Λ0 (t) =
∫ t
0 λ0 (s) ds and χ (t) = exp (−Λ0 (t)).

We extend now the previous definitions to the multivariate case. The multivariate survival function S (t) is
defined by

S (t1, . . . , tN ) = Pr {T1 > t1, . . . , TN > tN} (6)

where T1, . . . , TN are N survival times with univariate survival functions Sn (tn). Of course, we have1

Sn (tn) = Pr {Tn > tn}
= Pr {T1 ≥ 0, . . . , Tn−1 ≥ 0, Tn > tn, Tn+1 ≥ 0, . . . , TN ≥ 0}
= S (0, . . . , 0, tn, 0, . . . , 0) (8)

1In this paper, we assume that the survival times are continuous and take their values in R+. Generally, a distribution function
is defined by

F (t) = Pr {T ≤ t} (7)

This explains the definition adopted here for the survival function S (t) = 1− F (t) = Pr {T > t}. However, we can also adopt the
following definition S (t) = Pr {T ≥ t}.
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We note that the relationship between the multivariate survival function S and the multivariate distribution
function F is not direct as for the univariate case

S (t1, . . . , tN ) 6= 1− F (t1, . . . , tN ) (9)

If the survival function S is absolutely continuous, the joint density has the following expression

f (t1, . . . , tN ) = ∂1,... ,NF (t1, . . . , tN ) = (−1)N ∂1,... ,NS (t1, . . . , tN ) (10)

Multivariate expressions of the hazard rate and the hazard function are given by

λ (t1, . . . , tN ) = lim
max ∆n→0+

1
∆1 · · ·∆N

Pr {t1 ≤ T1 ≤ t1 + ∆1, . . . , tN ≤ TN ≤ tN + ∆N | T1 ≥ t1, . . . , TN ≥ tN}

=
f (t1, . . . , tN )
S (t1, . . . , tN )

= (−1)N ∂1,... ,NS (t1, . . . , tN )
S (t1, . . . , tN )

(11)

and

Λ (t1, . . . , tN ) =
∫ t1

0
· · ·

∫ tN

0
λ (s1, . . . , sN ) ds1 · · · dsN (12)

The relationship between S and Λ can not be simply formulated as in the univariate case2. For example, we
obtain in the bivariate case

S (t1, t2) = S1 (t1)S2 (t2) eΛ(t1,t2) (13)

Using hazard functions, construction of multivariate survival function is also not easy. Moreover, it is generally
based on the conditional hazard rate (Shaked and Shanthikumar [1987]). In this article, we focus on another
construction called the copula (or marginal) modelling which is more natural.

2.2 An example with the Clayton model

Clayton [1978] considers a bivariate ‘association’ model for an ordered pair of individuals. Let us denote T1

and T2 the age at failure of the first and second members of the pair. Clayton introduces also a cross-ratio
function ϑ (t1, t2) defined in the following way

ϑ (t1, t2) =
λ (t1 | T2 = t2)
λ (t1 | T2 ≥ t2)

(14)

“This function may be interpreted as the ratio of the hazard rate of the conditional distribution of T1, given
T2 = t2, to that of T1, given T2 ≥ t2” (Oakes [1989], page 488). We have

λ (t1 | T2 = t2) = −∂1S1 (t1 | T2 = t2)
S1 (t1 | T2 = t2)

= −∂1,2S (t1, t2)
∂2S (t1, t2)

(15)

and

λ (t1 | T2 ≥ t2) = −∂1S (t1, t2)
S (t1, t2)

(16)

2see Dabrowska [1996].
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A new expression of ϑ (t1, t2) is then

ϑ (t1, t2) =
∂1,2S (t1, t2)× S (t1, t2)
∂1S (t1, t2)× ∂2S (t1, t2)

=
f (t1, t2)× S (t1, t2)

∂1S (t1, t2)× ∂2S (t1, t2)
(17)

because f (t1, t2) = ∂1,2F (t1, t2) = ∂1,2S (t1, t2). This representation of ϑ (t1, t2) corresponds to the one used
by Oakes [1989] and we will see later that it plays an important role in survival modelling. Clayton assumes
that ϑ (t1, t2) is constant and is equal to a parameter ϑ with ϑ ≥ 0. We have also

∂1,2S (t1, t2)
S (t1, t2)

− ϑ
∂1S (t1, t2)
S (t1, t2)

× ∂2S (t1, t2)
S (t1, t2)

= 0 (18)

It comes that the survival function S (t1, t2) is the solution of the non-linear second-order partial differential
equation3:

∂1,2π (t1, t2) + (ϑ− 1)× ∂1π (t1, t2)× ∂2π (t1, t2) = 0 (20)

with

π (t1, t2) = − lnS (t1, t2) (21)

Clayton shows that the solution has the following form:

S (t1, t2) = [1 + (ϑ− 1) (a1 (t1) + a2 (t2))]
− 1

ϑ−1 (22)

where a1 and a2 are two nondecreasing functions with a1 (0) = a1 (0) = 0.

We will now give the canonical representation of the survival function (22). The univariate margins of
S (t1, t2) are respectively

S1 (t1) := Pr {T1 ≥ t1, T2 ≥ 0} = S (t1, 0) = [1 + (ϑ− 1) a1 (t1)]
− 1

ϑ−1 (23)

and

S2 (t2) = [1 + (ϑ− 1) a2 (t2)]
− 1

ϑ−1 (24)

The survival copula associated to the Clayton model is then4

C̆ (u1, u2) = S
(

S−1
1 (u1) ,S−1

2 (u2)
)

=

[

1 + (ϑ− 1)

(

u1−ϑ
1 − 1
ϑ− 1

+
u1−ϑ

2 − 1
ϑ− 1

)]− 1
ϑ−1

=
(

u1−ϑ
1 + u1−ϑ

2 − 1
)− 1

ϑ−1 (26)
3We remark that

∂1,2 [− lnS (t1, t2)] =
∂1S (t1, t2)× ∂2S (t1, t2)

S2 (t1, t2)
−

∂1,2S (t1, t2)
S (t1, t2)

(19)

The result is then straightforward.
4We have

S(−1)
n (un) = a(−1)

n

 
u1−ϑ

n − 1
ϑ− 1

!
(25)

If we assume that an is strictly increasing, the existence of the copula follows immediately. Otherwise, we have to involve the
“Extension Theorem for Copulas” of Sklar [1996].
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This copula function is a special case of the Cook-Johnson copula which is defined by the following function

C (u1, . . . , uN ; θ) =

(

N
∑

n=1

u−θ
n −N + 1

)− 1
θ

(27)

We have the correspondence ϑ = θ + 1.

2.3 Survival copulas

2.3.1 Definition

Let C̆ be a copula. A multivariate survival function S can be defined as follows

S (t1, . . . , tN ) = C̆ (S1 (t1) , . . . ,SN (tN )) (28)

where (S1, . . . ,SN ) are the marginal survival functions. Nelsen [1999] notices that “C̆ couples the joint survival
function to its univariate margins in a manner completely analogous to the way in which a copula connects
the joint distribution function to its margins”. We can then demonstrate the following theorem for survival
distributions which is equivalent as this given by Sklar [1959] for distributions.

Theorem 1 (Sklar’s canonical representation) Let S be an N -dimensional survival function with margins
S1, . . . ,SN . Then S has a copula representation:

S (t1, . . . , tN ) = C̆ (S1 (t1) , . . . ,SN (tN )) (29)

The copula C̆ is unique if the margins are continuous. Otherwise, only the subcopula is uniquely determined on
RanS1 × RanS2 × . . .× RanSN .

Proof. The proof is the same as for distribution functions (see Sklar [1959], Deheuvels [1978] and Sklar
[1996]).

In the case N = 2, Nelsen [1999] proves the theorem using distribution functions. Let C be the copula
function of the bivariate distribution of (T1, T2). We have

S (t1, t2) = Pr {T1 > t1, T2 > t2}
= 1− F1 (t1)− F2 (t2) + F (t1, t2)

= S1 (t1) + S2 (t2)− 1 + C (1− S1 (t1) , 1− S2 (t2))
= C̆ (S1 (t1) ,S2 (t2)) (30)

with

C̆ (u1, u2) = u1 + u2 − 1 + C (1− u1, 1− u2) (31)

To prove the previous theorem, we have to verify that C̆ is a copula function.

1. The margins of C̆ are uniform:

C̆ (u1, 1) = u1 + C (1− u1, 0)

= u1 (32)

and

C̆ (1, u2) = u2 (33)
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2. C̆ is a grounded function:

C̆ (u, 0) = C̆ (0, u)

= u− 1 + C (1, 1− u)

= u− 1 + 1− u

= 0 (34)

3. C̆ is 2-increasing:

VC̆ ([u1, v1]× [u2, v2]) = C̆ (v1, v2)− C̆ (v1, u2)− C̆ (u1, v2) + C̆ (u1, u2) ≥ 0 (35)

whenever (u1, u2) ∈ [0, 1]2, (v1, v2) ∈ [0, 1]2 such 0 ≤ u1 ≤ v1 ≤ 1 and 0 ≤ u2 ≤ v2 ≤ 1. To show this
property, we compute

VC̆ ([u1, v1]× [u2, v2]) = C (1− v1, 1− v2)−C (1− v1, 1− u2)−C (1− u1, 1− v2) + C (1− u1, 1− u2)
(36)

Using the notations úi = 1− ui and v́i = 1− vi, we remark that

VC̆ ([u1, v1]× [u2, v2]) = VC ([v́1, ú1]× [v́2, ú2])

≥ 0 (37)

because C is 2-increasing and 0 ≤ v́1 ≤ ú1 ≤ 1 and 0 ≤ v́2 ≤ ú2 ≤ 1.

In the general case, we obtain similar results.

Theorem 2 The relationship between the copula C and the survival copula C̆ is given by

C̆ (u1, . . . , un, . . . , uN ) = C̄ (1− u1, . . . , 1− un, . . . , 1− uN ) (38)

with

C̄ (u1, . . . , un, . . . , uN ) =
N

∑

n=0



(−1)n
∑

v(u1,... ,un,... ,uN )∈Z(N−n,N,1)

C (v1, . . . , vn, . . . , vN )



 (39)

where Z (M, N, ε) denotes the set
{

v ∈ [0, 1]N | vn ∈ {un, ε} ,
∑N

n=1 X{ε} (vn) = M
}

.

Proof. see Appendix A.1.

Theorem 3 The relationship between the copula C̆ and the survival copula C is given by

C (u1, . . . , un, . . . , uN ) =
N

∑

n=0



(−1)n
∑

v(u1,... ,un,... ,uN )∈Z(N−n,N,0)

C̆ (1− v1, . . . , 1− vn, . . . , 1− vN )



 (40)

Proof. see Appendix A.2.
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2.3.2 Properties

We collect here some properties that are useful for survival analysis. We first note that because C̆ is a copula
function, results on copula apply to survival copulas. For example, we have

C−≺ C̆ ≺ C
+

(41)

We refer to Nelsen [1999] for other interesting properties. In what follows, we give some new results which
exploit the relationship between copulas and their survival copulas.

Property 1 The copula is radially symmetric if and only if

C̆ = C (42)

Proof. By definition, a random vector (T1, . . . , TN ) is said to be radially symmetric about (t?1, . . . , t?N ) if
and only if (Nelsen [1999], p. 31)

F (t?1 + t1, . . . , t?N + tN ) = S (t?1 − t1, . . . , t?N − tN ) for all t ∈ RN (43)

The previous equation is equivalent to

C (F1 (t?1 + t1, ) , . . . ,FN (t?N + tN )) = C̆ (S1 (t?1 − t1, ) , . . . ,SN (t?N − tN )) for all t ∈ RN

⇐⇒ C (F1 (t?1 + t1, ) , . . . ,FN (t?N + tN )) = C̆ (S1 (t?1 − t1, ) , . . . ,SN (t?N − tN )) for all t ∈ RN

⇐⇒ C (F1 (t?1 + t1, ) , . . . ,FN (t?N + tN )) = C̆ (F1 (t?1 + t1, ) , . . . ,FN (t?N + tN )) for all t ∈ RN

⇐⇒ C (u1, . . . , uN ) = C̆ (u1, , . . . , uN ) for all u ∈ [0, 1]N (44)

because

Fn (t?n + tn) = F (+∞, . . . , +∞, t?n + tn,+∞, . . . , +∞)

= S (−∞, . . . ,−∞, t?n − tn,−∞, . . . ,−∞)

= Sn (t?n − tn) (45)

We remark that the previous property is very interesting for computational purposes, because it is equivalent
to work with the copula or to work with the survival copula. This is for example the case of the Normal copula5.
Another examples are the following:

• the product copula C⊥

For example, we verify that we have in the bivariate case

C̆⊥ (u1, u2) = u1 + u2 − 1 + (1− u1) (1− u2)

= u1u2

= C⊥ (u1, u2) (46)

• The upper Fréchet copula C+

In the case N = 2, we have

C̆+ (u1, u2) = u1 + u2 − 1 + min (1− u1, 1− u2)

= u1 + u2 −max (u1, u2)

= min (u1, u2)

= C+ (u1, u2) (47)
5because the Normal distribution is radially symmetric about (0, . . . , 0).
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• The bivariate lower Fréchet copula C−

We have

C̆− (u1, u2) = u1 + u2 − 1 + max (1− u1 − u2, 0)
= −min (1− u1 − u2, 0)
= max (u1 + u2 − 1, 0)

= C− (u1, u2) (48)

Property 2 In the bivariate case, if C1 � C2 then C̆1 � C̆2.

Proof. If C1 � C2, we have

C1 (1− u1, 1− u2) ≥ C2 (1− u1, 1− u2)

⇐⇒ u1 + u2 − 1 + C1 (1− u1, 1− u2) ≥ u1 + u2 − 1 + C2 (1− u1, 1− u2)

⇐⇒ C̆1 (u1, u2) ≥ C̆2 (u1, u2) (49)

Remark 4 This property is not verified for N > 2. For example, let consider special cases of the Farlie-Gumbel-
Morgenstern copula (Johnson and Kotz [1975]). If we define the function C(θ) as follows

C(θ) (u1, u2, u3) = u1u2u3 (1 + θ(1− u1)(1− u2)) (50)

We verify that it is a copula6 for |θ| ≤ 1. We remark that

C̆(θ1) (u1, u2, u3)− C̆(θ2) (u1, u2, u3) = (θ1 − θ2) · u1u2u3 (1− u1) (1− u2) (52)

So, if θ1 ≤ θ2, we have C(θ1) ≺ C(θ2) and C̆(θ1) ≺ C̆(θ2). We define now C(θ) in a more complicated way

C(θ) (u1, u2, u3) = u1u2u3 (1 + θ(1− u1)(1− u2) (1− u3)) (53)

C(θ) is a copula function7 for |θ| ≤ 1. If θ1 ≤ θ2, it implies that C(θ1) ≺ C(θ2). Nevertheless, we have
C̆(θ1) � C̆(θ2) because

C̆(θ1) (u1, u2, u3)− C̆(θ2) (u1, u2, u3) = − (θ1 − θ2) · u1u2u3 (1− u1) (1− u2) (1− u3)

= C(θ2) (u1, u2, u3)−C(θ1) (u1, u2, u3)

≥ 0 (55)

The following result can be useful for simulation issues.

Property 3 Let X1, . . . , XN be N random variables with continuous distributions F1, . . . ,FN and copula C.
We consider N continous distributions G1, . . . ,GN and we denote Tn the random variable Tn = G(−1)

n (1− Fn (Xn)).
It comes that the margins and the copula of the random vector (T1, . . . , TN ) are respectively G1, . . . ,GN and
the survival copula C̆ of C.

6C(θ) is grounded and C(θ) (u) = un if all coordinates of u are 1 except un. Moreover, the density is

c(θ) (u1, u2, u3) = 1 + θ (1− 2 (u1 + u2) + 4u1u2) (51)

If |θ| ≤ 1, c(θ) (u1, u2, u3) ≥ 0.
7C(θ) is grounded and C(θ) (u) = un if all coordinates of u are 1 except un. Moreover, the density is

c(θ) (u1, u2, u3) = 1 + θ (1− 2 (u1 + u2 + u3) + 4 (u1u2 + u1u3 + u2u3)− 8u1u2u3) (54)

If |θ| ≤ 1, c(θ) (u1, u2, u3) ≥ 0.

9



Proof. The fact that C 〈T1, . . . , TN 〉 is C̆ 〈X1, . . . , XN 〉 is easy to show because G(−1)
n and 1 − Fn are

respectively strictly increasing and strictly decreasing functions. Generalisation of the theorem 2.4.4 of Nelsen
[1999] can then be applied. To prove that the margins are G1, . . . ,GN , we use the following statements:

Pr {Tn ≤ tn} = Pr
{

G(−1)
n (1− Fn (Xn)) ≤ tn

}

= 1− Pr {Fn (Xn) ≤ 1−Gn (tn)}
= Gn (tn) (56)

The density of C̆ is related to the density of C by the next property.

Property 4 The absolutely continuous component of the survival copula C̆ at the point (u1, . . . ,uN ) is equal
to the absolutely continuous component of the copula C at the reflexive point (1− u1, . . . ,1− uN ).

Proof. see equation (239) page 66.
We obtain a related result for radially symmetric copulas. The absolutely continuous component of the survival
copula C̆ is equal to these of the copula C. Moreover, it is symmetric about the point

( 1
2 , . . . , 12

)

.

2.4 Special cases

In this paragraph, we present some well-known copula functions and give some references for their applications
in survival modelling and reliability theory. Because a survival copula is a copula function too, we notice that
survival functions may be defined in two ways. The first approach uses a survival copula, that is a survival
copula based on a copula derived from a specific distribution

S (t1, . . . , tN ) = C̆ (S1 (t1) , . . . ,SN (tN )) (57)

The second approach specifies directly a copula function

S (t1, . . . , tN ) = C (S1 (t1) , . . . ,SN (tN )) (58)

Let us consider the previous Clayton model. We have

S (t1, t2) =
(

S−θ
1 (t1) + S−θ

2 (t2)− 1
)− 1

θ (59)

The copula function is then C (u1, u2) =
(

u−θ
1 + u−θ

2 − 1
)− 1

θ . We may also build another model using the
survival copula of the Cook-Johnson copula. We have

C̆ (u1, u2) = u1 + u2 − 1 +
(

(1− u1)
−θ + (1− u2)

−θ − 1
)− 1

θ
(60)

and

S (t1, t2) = S1 (t1) + S2 (t2)− 1 +
(

(1− S1 (t1))
−θ + (1− S2 (t2))

−θ − 1
)− 1

θ
(61)

The two survival functions (59) and (61) give two different models.

For the margins Sn, we could use the univariate survival functions in Table 1 with explanatory variables. In
finance, we generally consider piecewise constant hazard rates

λ (t) =
M
∏

m=1

λm1[t?
m−1<t≤t?

m] (62)
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Model λ (t) S (t)
Exponential λ exp (−λt)

Weibull λγtγ−1 exp (−λtγ)
Lognormal γt−1φ (γ ln (λt)) / (1− Φ(γ ln (λt))) 1− Φ (γ ln (λt))

Loglogit λγ−1t
1
γ /

(

t + λt1+
1
γ

)

1/
(

1 + λt
1
γ

)

Gompertz λγ exp (γt) exp (λ (1− eγt))

Table 1: Some univariate survival functions

with t?m the knots of the function and t?M = ∞. The survival function is then

S (t) = exp

(

m
∑

i=1

λi
(

t?i−1 − t?i
)

− λm+1 (t− t?m)

)

if t ∈
]

t?m, t?m+1

]

(63)

2.4.1 Copulas related to exponential distributions

The exponential distribution plays a prominent role in statistics. The reason is that it has a lot of interesting
properties, and moreover it could be justified by many different mathematical constructions (or equivently it
is the law of physical mecanisms). For some statistical problems, the choice of one distribution is not only a
question of statistical fitting, because the properties of the distribution could not be adapted to the problem:

The application of probability theory and mathematical statistics to real life situations involves two
steps. First, a model is set up, and then probabilistic or statistical methods are applied within the
adopted model. In many instances the first step is arbitrary. [...] The way of avoiding an arbitrary
distributional assumption is to develop a characterization theorem from some basic assumptions of
the real life situation we face (Galambos [1982]).

In the same article, Galambos considers the following problem:

Assume that a system consists of N identical components which are connected in
series. This means that the systems fails as soon as one of the components fails.
One can assume that the components function independently. Assume further
that the random time interval until the failure of the system is one Nth of the
time interval of component failure.

We have

Pr {min (T1, . . . , TN ) ≤ t} = Pr {T1 ≤ N · t} (64)

Hence

S (t) = SN
(

t
N

)

(65)

with S (t) = Pr {T1 > t}. The only solution of this functional equation for all intergers N ≥ 1 is the exponential
distribution:

S (t) = exp (−λt) (66)

We obtain here a ‘physical’ justification of the raison d’être of the exponential distribution. Other examples
could be found in different fields of probability: Poisson processes, renewal theory or order statistics. Galambos
and Kotz [1978] have tried to unify the different characterization of the exponential distribution and have shown
the equivalence of the four following properties:
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1. the hazard rate of an exponential random variable T is constant;

2. its expected residual life E [T | T ≥ t] is constant;

3. it has the “lack of memory” (LMP) property, that is

Pr {T ≥ t1 + t2 | T ≥ t1} = Pr {T ≥ t2} (67)

or equivently if T is absolutely continuous

S (t1 + t2) = S (t1)S (t2) (68)

4. the distribution of N · T1:N is the same as T .

These different properties explain the importance of the exponential distribution in reliability and survival
modelling. Different authors have also searched to propose extensions to the multidimensional case. The first
one is Gumbel [1960] who proposes

F (t1, t2) = 1− e−t1 − e−t2 + e−(t1+t2+θt1t2) (69)

and

F (t1, t2) =
(

1− e−t1
) (

1− e−t2
)

(

1 + θe−(t1+t2)
)

(70)

Its two bivariate exponential distributions are in fact two bivariate distributions with exponential margins. As
Freund [1961] remarks, Gumbel does “not discuss the appropriateness of these models to particular physical
situations”. Using a model for the lifetimes of two components, Freund find “a bivariate extension of the
exponential distribution”:

S (t1, t2) =

{

α1
α1+β1−β2

e−β2t2−(α1+β1−β2)t1 + β1−β2
α1+β1−β2

e−(α1+β1)t2 for t1 < t2
β1

α1+β1−α2
e−α2t1−(α1+β1−α2)t2 + α1−α2

α1+β1−α2
e−(α1+β1)t1 for t1 ≥ t2

(71)

However, we remark that the margins are not exponential, but mixtures of exponentials:

S (t1, 0) =
β1

α1 + β1 − α2
e−α2t1 +

α1 − α2

α1 + β1 − α2
e−(α1+β1)t1 (72)

The difference between the Gumbel and Freund exponential distributions poses the following problem:

How to characterize a bivariate exponential distribution?

The answer given by Hutchinson and Lai [1990] is to consider bivariate distributions which verify bivariate
extensions of properties of the univariate exponential distribution. For example, we could consider the following
properties:

1. F (t1, t2) is absolutely continuous;

2. the hazard rate λ (t1, t2) is constant;

3. F has the ”lack of memory” (LMP) property

S (t1 + t, t2 + t) = S (t1, t2)S (t, t) (73)

4. the order statistic min (T1, T2) is exponential distributed;
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5. min (T1, T2) and T1 − T2 are independently distributed;

6. etc.

Nevertheless, it is not possible to obtain a bivariate distribution which has all these properties8 (Block and
Basu [1974]). So, we could only obtain a distribution “close” to the idea of an exponential bivarate distribution.

Marshall and Olkin [1967] consider a two-component system subject to “fatal” shocks governed by three
independent Poisson processes N1 (t), N2 (t) and N12 (t) with intensities λ1, λ2 and λ12. The two first processes
N1 and N2 control shocks to individual components, whereas N12 control shocks to both components. We have

S (t1, t2) = Pr {N1 (t1) = 0} · Pr {N2 (t2) = 0} · Pr {N12 (max (t1, t2)) = 0}
= exp (−λ1t1 − λ2t2 − λ12 max (t1, t2)) (74)

This distribution is certainly the most known bivariate exponential distribution and is sometimes denoted BVE.
Nevertheless, it is not absolutely continuous. By omitting the singular part of BVE, Block and Basu [1974]
have defined the ACBVE distribution in the following way:

S (t1, t2) =
λ1 + λ2 + λ12

λ1 + λ2
exp (−λ1t1 − λ2t2 − λ12 max (t1, t2))−

λ12

λ1 + λ2
exp (− (λ1 + λ2 + λ12)max (t1, t2))

(75)

The three distributions Freund, BVE and ACBVE have the properties (3), (4) and (5). BVE is not absolutely
continuous whereas the margins of Freund and ACBVE are not exponentials, but mixture of two exponentials.

Thanks to Sklar’s theorem, we could deduce the copula of the previous distributions. Let us consider the
Gumbel’s bivariate exponential distribution (69). We have

C (u1, u2) = u1 + u2 − 1 + (1− u1) (1− u2) e−θ ln(1−u1) ln(1−u2) (76)

Barnett [1980] has shown that the corresponding survival copula is

C̆ (u1, u2) = u1u2 exp (−θ ln u1 ln u2) (77)

It is called the Gumbel-Barnett copula (Hutchinson and Lai [1990], page 94). Note also that the second
Gumbel’s bivariate exponential distribution (70) corresponds in fact to a FGM copula. Nelsen [1999] shows
that the survival copula of the Marshall-Olkin model is

C̆ (u1, u2) = min
(

u1−θ1
1 u2, u1u1−θ2

2

)

(78)

with θ1 = λ12/ (λ1 + λ12) and θ2 = λ12/ (λ2 + λ12). In the case of the Freund and ACBVE distributions, there
does not exist an analytical expression of the copula (but it could be computed numerically). For other copulas
related to exponential distributions, we refer to Joe and Hu [1996], Joe [1997] and Joe and Ma [2000].

Remark 5 The previous bivariate exponential distributions has a multivariate extension. This is for example
the case of Marshall-Olkin family (Basu [1988]).

2.4.2 Archimedean copulas

Definition 6 (Schweizer and Sklar [1983, Theorem 6.3.6, p. 88], Nelsen [1999, Theorem 4.6.2, p. 122])
Let ϕ be a continous strictly decreasing function from [0, 1] to [0,∞) such that ϕ (0) = ∞, ϕ (1) = 0, and

(−1)n dn

dun ϕ−1 (u) ≥ 0 for n = 1, . . . , N (79)

The function defined by

C (u1, . . . , uN ) = max
(

ϕ−1 (ϕ (u1) + . . . + ϕ (uN )) , 0
)

(80)

is an Archimedean copula. ϕ is called the generator of the copula.
8except the product of two exponential distributions, that is the distribution of two independent exponential random variables.
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The name ‘archimedean’ is explained in details in Ling [1965] (see also Genest and MacKay [1986a,1986b] and
Nelsen [1999] page 98). Archimedean copulas play an important role because of their mathematical properties
and computational facilities. Moreover, many standard 2-copulas are Archimedean9 (see Table 4.1 of Nelsen
[1999]).

This is for example the case of the Frank copula, which is defined by the function

C (u1, u2; θ) = −1
θ

ln
(

1 +
[exp (−θu1)− 1] [exp (−θu2)− 1]

exp (−θ)− 1

)

(81)

The expression of the generator ϕ is

ϕ (u) = − ln
(

exp (−θu)− 1
exp (−θ)− 1

)

(82)

We can show that this copula is comprehensive: C corresponds respectively to C−, C⊥ and C+ when θ tends
to −∞, 0 and +∞ — but only C− and C⊥ are Archimedean. We remark that

C̆ (u1, u2) = u1 + u2 − 1− 1
θ

ln
(

1 +
[exp (−θ (1− u1))− 1] [exp (−θ (1− u2))− 1]

exp (−θ)− 1

)

= −1
θ

ln
((

1 +
[exp (−θ (1− u1))− 1] [exp (−θ (1− u2))− 1]

exp (−θ)− 1

)

exp (−θ (u1 + u2 − 1))
)

= −1
θ

ln
(

1 +
[exp (−θu1)− 1] [exp (−θu2)− 1]

exp (−θ)− 1

)

(83)

It comes that the survival copula is equal to the copula (Genest [1987]). Moreover, we can show that the
only Archimedean copula that verify this property is the Frank copula (see Frank [1979,1991]). So, for other
Archimedean copulas, the corresponding survival copula is not Archimedean. However, we may find copulas
which are not Archimedean such that the survival copula is Archimedean. For example, Genest and MacKay
[1986a] remark that the Gumbel-Barnett copula (77) is Archimedean — ϕ (u) = ln (1− θ ln t) — whereas the
Gumbel copula (76) is not Archimedean.

Note that the Clayton model corresponds to an Archimedean copula: ϕ (u) = ln (1− θ ln t). Another inter-
esting model has been suggested by Hougaard [1986a,1986b]:

C (u1, u2; θ) = exp
(

−
(

(− ln u1)
θ + (− ln u2)

θ
) 1

θ
)

(84)

It is called the Gumbel-Hougaard copula10 (Hutchinson and Lai [1990], page 84). The main difference be-
tween these two copulas is that the Clayton (or Cook-Johnson) copula could be extended to present a negative
dependence (Genest and MacKay [1986a]):

C (u1, u2; θ) = max
(

(

u−θ
1 + u−θ

2 − 1
)− 1

θ , 0
)

(85)

If θ ∈ [−1, 0[, C ≺ C⊥. For the Gumbel-Hougaard copula, extension to negative dependence is not possible.

2.4.3 Frailty models

Frailty models have been introduced by Lancaster [1979] and Vaupel, Manton and Stallard [1979] and
have been popularized by Oakes [1989]. The main idea is to introduce dependence between survival times

9Note that the conditions (79) and ϕ (0) = ∞ are replaced by ϕ is convex in the bivariate case.
10Gumbel [1961] is one of the first to use this copula.
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T1, . . . , TN by using an unobserved random variable W , called the frailty. Given the frailty W with distribution
G, the survival times are assumed to be independent:

Pr {T1 > t1, . . . , TN > tN | W = w} =
N
∏

n=1

Pr {Tn > tn | W = w} (86)

We have

S (t1, . . . , tN | w) =
N
∏

n=1

Sn (t1 | w)

= χw
1 (t1)× χw

2 (t2)× · · · × χw
N (tN ) (87)

where χn (tn) is the baseline survival function. The unconditional joint survival function is then defined by

S (t1, . . . , tN ) = E [S (t1, . . . , tN | w)] (88)

where the expectation is taken with respect to the random variable W . We have

S (t1, . . . , tN ) =
∫ N

∏

n=1

[χn (tn)]w dG (w) (89)

In order to have a more interesting representation of frailty models, we need the following theorem due to
Marshall and Olkin [1988].

Theorem 7 (Marshall and Olkin [1988, Theorem 2.1, p. 835]) Let F1, . . . ,FN be univariate distribu-
tion functions, and let G be an N -variate distribution function such that Ḡ (0, . . . , 0) = 1, with univariate
marginals Gn. Denote the Laplace transform of G and Gn, respectively, by ψ and ψn. Let C be an N -variate
distribution function with all univariate marginals uniform on [0, 1]. If Hn (x) = exp

(

−ψ−1
n (Fn (x))

)

, then

F (x1, . . . , xN ) =
∫

· · ·
∫

C ([H1 (x1)]
w1 , . . . , [HN (xN )]wN ) dG (w1, . . . , wN ) (90)

is an N -variate distribution function with marginals F1, . . . ,FN .

Marshall and Olkin [1988] study then “a particularly interesting and simple case of (90)”. Let us assume
that the univariate marginal distributions Gn are the same — we note them G1 — G is the upper Fréchet
bound and C is the product copula C⊥. Expression (90) becomes

F (x1, . . . , xN ) =
∫ N

∏

n=1

[Hn (xn)]w1 dG1 (w1)

=
∫

exp

(

−w1

N
∑

n=1

ψ−1
1 Fn (xn)

)

dG1 (w1)

= ψ1

(

ψ−1
1 (F1 (x1)) + . . . + ψ−1

1 (FN (xN ))
)

(91)

The corresponding copula is then given by

C (u1, . . . , uN ) = ψ1

(

ψ−1
1 (u1) + . . . + ψ−1

1 (uN )
)

(92)

It is a special case of an Archimedean copula where the generator ϕ is the inverse of a Laplace transform. We
can now state the definition of frailty survival functions.
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Definition 8 A frailty survival function is a special case of the construction based on copulas

S (t1, . . . , tN ) = C̆ (S1 (t1) , . . . ,SN (tN )) (93)

where C̆ is an Archimedean copula with a generator corresponding to the inverse of the Laplace transform of the
distribution of the frailty variable W . More generally, the generator is the inverse of a Laplace transform11.

We can now give some examples of frailty distributions. Let us consider the Clayton model. The copula
function is frailty with the Laplace transform of a Gamma variate: ψ (x) = (1 + x)−

1
θ . The Gumbel-Hougaard

copula is frailty too and we have ψ (x) = exp
(

−x
1
θ

)

. This is the Laplace transfom of a positive stable
distribution.

We end this paragraph by two remarks.

Remark 10 Frailty models exhibit only positive dependence (in the PQD sense). To show this property, we
use theorem 3.1 of Marshall and Olkin [1988]. They show that if the distributions C and G in (90) are
associated, then F given by (90) is associated. Because C⊥ and the upper Fréchet bound are associated, frailty
distributions are necessarily associated. It comes that the survival times are PQD. Note that the PQD property
is not satisfied for ‘extensions’ of copulas derived from frailty models. For example, if we consider the Cook-
Johnson copula (85), C ≺ C⊥ if θ ∈ [−1, 0[. In this case, ψ (x) = (1 + x)−

1
θ is not a Laplace transform, because

the completely monotone property does not hold. Another example is the Frank copula which corresponds to a
frailty model if and only if θ ≥ 0.

Remark 11 In this article, frailty models are in fact proportional hazards frailty models:

Λ (t | W = w) = wΛ (t) (94)

We do not consider others frailty models, for example the multiplicative hazards frailty models ( Anderson and
Louis [1995]):

Λ (t | W = w) = Λ (wt) (95)

In this last case, we have

S (t1, . . . , tN ) =
∫ N

∏

n=1

χn (wtn) dG (w) (96)

2.4.4 Miscellaneous copulas

Other families of copula functions may be used for survival modelling. In particular, we refer to Joe [1997] and
Nelsen [1999] for additional materials.

For example, we may consider the Normal copula defined as follows

C (u1, . . . , uN ;ρ) = Φρ
(

Φ−1 (u1) , . . . , Φ−1 (uN )
)

(97)

11We may use the following characterization.

Definition 9 (Feller [1971, theorem 1, p. 439]) A function ψ on [0,∞) is the Laplace transform of a probability distribution
iff it is completely monotone, and ψ (0) = 1.
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where ρ is a symmetric, positive definite matrix with diag ρ = 1 and Φρ is the standardized multivariate Normal
cdf with correlation matrix ρ. The corresponding density is

c (u1, . . . , uN ; ρ) =
1

|ρ|
1
2

exp
(

−1
2
ς>

(

ρ−1 − I
)

ς
)

(98)

with ςn = Φ−1 (un). Except the work of Song [2000], this copula function has been hardly studied. However, it
presents very interesting properties for financial applications (Bouyé, Durrleman, Nikeghbali, Riboulet
and Roncalli [2000a,2000b]). Moreover, there exists an analytical expression of the ML estimator of the
parameters (Durrleman, Nikeghbali and Roncalli [2000a]) and simulation is straightforward.

2.5 Dependence measures and related concepts

2.5.1 General considerations about dependence

Since the works of Deheuvels [1978,1979a] and Schweizer and Wolff [1981], we know that the dependence
between random variables is characterized entirely by the copula of the corresponding multivariate distribution.
However, it could be interesting to use a dependence measure (a single number) to compare different survival
functions, because the direct comparison between survival copulas may not be obvious12. It is common to use
the correlation measure and to speak about “correlated survival times”. In this paragraph, we will show that it
could make no sense to use this measure.

“The traditional way of evaluating dependence in a bivariate distribution is by means of the correlation
coefficient (Pearson correlation)” (Hougaard [2000], page 129). It is defined by

ρ (T1, T2) =
cov (T1, T2)

√

var (T1) var (T2)
(99)

with

cov (T1, T2) =
∫ ∞

0

∫ ∞

0
(S (t1, t2)− S1 (t1)S2 (t2)) dt1 dt2 (100)

and

var (Tn) = 2
∫ ∞

0
tSn (t) dt−

[∫ ∞

0
Sn (t) dt

]2

(101)

The Pearson correlation is an appropriate measure of the dependence when the random variables have jointly a
multivariate normal distribution. Embrechts, McNeil and Straumann [1999,2000] show that the standard
correlation approach to dependency remains natural and unproblematic in the class of elliptical distributions.
When the distribution is not elliptical, the use of the Pearson correlation may be problematic. This is generally
the case in survival modelling.

Here are some misinterpretations of the Pearson correlation:

1. T1 and T2 are independent if and only if ρ (T1, T2) = 0;

2. ρ (T1, T2) = 0 means that there are no perfect dependence between T1 and T2;

3. for given margins, the permissible range of ρ (T1, T2) is [−1, 1];
12Moreover, the concordance ordering is only a partial ordering of the set of copulas (Nelsen [1999], page 34).
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To show that the first statement is false13, we consider the cubic copula of Durrleman, Nikeghbali and
Roncalli [2000b]

C (u1, u2) = u1u2 + α [u1(u1 − 1)(2u1 − 1)] [u2(u2 − 1)(2u2 − 1)] (102)

with α ∈ [−1, 2]. If the margins of T1 and T2 are continous and symmetric, the authors show that the Pearson
correlation is zero. Moreover, if α 6= 0, the random variables T1 and T2 are not independent. For the second
statement14, we consider the following copula:

C (u1, u2) =







u1 0 ≤ u1 ≤ 1
2u2 ≤ 1

2
1
2u2 0 ≤ 1

2u2 ≤ u1 ≤ 1− 1
2u2

u1 + u2 − 1 1
2 ≤ 1− 1

2u2 ≤ u1 ≤ 1
(103)

Nelsen [1999] shows that ρ (U1, U2) = 0, but Pr {U2 = 1− |2U1 − 1|} = 1, i.e. “the two random variables can
be uncorrelated although one can be predicted perfectly from the other” (Nelsen [1999], page 57). For the
last statement, we need works of Tchen [1980], who shows that ρ is increasing with respect to the concordance
order15

C1 � C2 ⇒ ρ (T1, T2;C1) ≥ ρ (T1, T2;C2) (104)

It comes that ρ (T1, T2) is bounded

ρ− (T1, T2) ≤ ρ (T1, T2) ≤ ρ+ (T1, T2) (105)

and the bounds are attained for the Fréchet copulas C− and C+: ρ− (T1, T2) = ρ (T1, T2;C−) and ρ+ (T1, T2) =
ρ (T1, T2;C+). Moreover, we note that

C � C⊥ =⇒ ρ (T1, T2;C) ≥ 0 (106)

and

C ≺ C⊥ =⇒ ρ (T1, T2;C) ≤ 0 (107)

So, if the dependence between the survival times is positive (in the PQD sense), the Pearson correlation is
positive. In the same way, it is negative in the case of negative dependence (in the NQD sense). We would
know characterize more precisely the bounds ρ− (T1, T2) and ρ+ (T1, T2). For that, we consider the following
interpretation of the copulas C− and C+ given by Mikusiński, Sherwood and Taylor [1991]:

• two random variables T1 and T2 are countermonotonic — or C = C− — if there exists a r.v. T such
that T1 = f1 (T ) and T2 = f2 (T ) with f1 non-increasing and f2 non-decreasing;

• two random variables T1 and T2 are comonotonic — or C = C+ — if there exists a random variable T
such that T1 = f1 (T ) and T2 = f2 (T ) where the functions f1 and f2 are non-decreasing.

We obtain also

ρ− (T1, T2) = ρ+ (T1, T2) =
E [f1 (T ) f2 (T )]− E [f1 (T )]E [f2 (T )]

σ [f1 (T )] σ [f2 (T )]
(108)

It is well-known that the solution of the equation ρ− = −1 (or ρ+ = 1) is f1 (t) = a1t + b and f2 (t) = a2t + b
with a1a2 < 0 (a1a2 > 0 for ρ+ = 1). The bounds ρ− = −1 and ρ+ = 1 are then always attained if T1 and T2 are
gaussian. In other cases, ρ ∈ [ρ−, ρ+] ⊂ [−1, 1]. In particular, when there is a non-linear relationship between T1

and T2, [ρ−, ρ+] ⊂ ]−1, 1[. Let us consider the example due to Wang [1998]. We assume that T1 ∼ LN (µ1, σ1)
13see also example 4 of Nelsen [1995].
14see also example 6 of Nelsen [1995].
15see also Cambanis, Simmons and Stout [1976] and Whitt [1976].
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and T2 ∼ LN (µ2, σ2). We can show that the minimum correlation ρ− is given when T2 = eµ2+
σ2
σ1

µ1T
−σ2

σ1
1 and

the maximum correlation ρ+ is given when T2 = eµ2−
σ2
σ1

µ1T
σ2
σ1
1 . It comes that (see Appendix A.4.2 of Wang

[1998])

ρ− =
e−σ1σ2 − 1

√

eσ2
1 − 1

√

eσ2
2 − 1

ρ+ =
eσ1σ2 − 1

√

eσ2
1 − 1

√

eσ2
2 − 1

(109)

Note that ρ+ is equal to 1 if and only if σ1 = σ2 and ρ− tends to −1 if σ1 ∨ σ2 −→ 0+. So, in the case where
σ1 6= σ2, the permissible range of ρ (T1, T2) is not [−1, 1] because ρ− > −1 and ρ+ < 1. Moreover, we have

lim
σ1∨σ2−→∞

ρ− = 0 (110)

and

lim
|σ1−σ2|−→∞

ρ+ = 0 (111)

In Figure 1, we have reported the range of [ρ−, ρ+] for different values of σ1 and σ2. In some cases, we remark
that ρ− � −1 and ρ+ � 1. For example, Table 2 presents numerical results when σ1 = 1 and σ2 = 3. We note
that the minimum correlation is close to zero even if the dependence between T1 and T2 is perfectly negative
and the maximum correlation is 0.16! For Kendall’s tau τ (T1, T2) and Spearman’s rho % (T1, T2), the bounds
are attained.

Copula ρ (T1, T2) τ (T1, T2) % (T1, T2)
C− −0.008 −1 −1

Normal copula with parameter −0.7 ' 0 −0.49 −0.68
C⊥ 0 0 0

Normal copula with parameter 0.7 ' 0.10 0.49 0.68
C+ 0.16 1 1

Table 2: Value of the dependence measures

Remark 12 In survival modelling, the random variables are positive. That’s imply that the lower bound −1
can never been reached:

ρ− 6= −1 (112)

Moreover, because of the distributions generally used (Weibull, Gompertz, etc.), it is very difficult to obtain a
large range of correlation. For example, Van den Berg [1997] shows that ρ ∈

[

− 1
3 , 1

2

]

when the baseline
hazards are constant.

2.5.2 Concordance measures

The previous illustrations show that the correlation is a relevant measure of dependence in a few special cases.
More appropriate are measures of concordance defined by Scarsini [1984] (see also Nelsen [1999], page 136).
This is the case of the Kendall’s tau or the Spearman’s rho. Because these two measures have been intensively
studied in Chapter 5 of Nelsen [1999], we just give here a result which permits to compute them easily.

Theorem 13 The Kendall’s tau and the Spearman’s rho of the survival copula C̆ are equal to the Kendall’s
tau and the Spearman’s rho of the associated copula C.
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Figure 1: Permissible range of ρ (T1, T2) when T1 and T2 are two Lognormal random variables

Proof. We have

%
〈

C̆
〉

= 12
∫∫

[0,1]2
C̆ (u1, u2) du1 du2 − 3

= 12
[

u2
1u2 + u1u2

2 − u1u2
]1
0 + 12

∫∫

[0,1]2
C (1− u1, 1− u2) du1 du2 − 3

= % 〈C〉 (113)

and

τ
〈

C̆
〉

= 1− 4
∫∫

[0,1]2
∂1C̆ (u1, u2) ∂2C̆ (u1, u2) du1 du2

= 1− 4
∫∫

[0,1]2

[

1− ∂1C̆ (1− u1, u2)
] [

1− ∂2C̆ (1− u1, u2)
]

du1 du2

= τ 〈C〉 (114)

2.5.3 Tail dependence

τ and % are two global measures of association. Sometimes, it could be useful to characterize the dependence
more locally. In particular, we could be interested in tail dependence.

Definition 14 (Joe [1997, p. 33]) If a bivariate copula C is such that

lim
u→1

1− 2u + C (u, u)
1− u

= λU (115)
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exists, then C has upper tail dependence if λU ∈ (0, 1] and no upper tail dependence if λU = 0. Similarly, if

lim
u→0

C (u, u)
u

= λL (116)

exists, C has lower tail dependence if λL ∈ (0, 1] and no lower tail dependence if λL = 0.

We could interpret these definitions as follows. Let T1 and T2 be two survival times. We remark that λU is
the limit in one of the following function

λU (u) = Pr
{

T2 > F−1
2 (u) | T1 > F−1

1 (u)
}

= Pr
{

T2 > S−1
2 (1− u) | T1 > S−1

1 (1− u)
}

=
1− 2u + C (u, u)

1− u
(117)

For λL, it is the limit in zero of λL (u) with

λL (u) = Pr
{

T2 < F−1
2 (u) | T1 < F−1

1 (u)
}

= Pr
{

T2 < S−1
2 (1− u) | T1 < S−1

1 (1− u)
}

=
C (u, u)

u
(118)

λU (u) (resp. λL (u)) indicates then the probability that T2 takes values greater (resp. less) than t2 = S−1
2 (1− u)

given that T1 is already greater (resp. less) than t1 = S−1
1 (1− u). λU (u) and λL (u) are called by Coles,

Currie and Tawn [1999] the quantile-dependent measures of dependence. We note that they depend only on
the copula function, not on the margins. Let λ̆U (u) and λ̆L (u) denote the corresponding measures when the
copula between T1 and T2 is the survival copula C̆. We have

λ̆U (u) =
1− 2u + C̆ (u, u)

1− u

=
C (1− u, 1− u)

1− u
= λL (1− u) (119)

and

λ̆L (u) =
2u− 1 + C (1− u, 1− u)

u

=
1− 2 (1− u) + C (1− u, 1− u)

1− (1− u)
= λU (1− u) (120)

We also deduce the following theorem.

Theorem 15 Let C̆ be the survival copula associated to C. We have

λU

〈

C̆
〉

= λL 〈C〉 (121)

and

λL

〈

C̆
〉

= λU 〈C〉 (122)
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The concept of tail dependence is important in survival modelling, because it indicates the behaviour of the
joint survival times (T1, T2) at the limit cases (0, 0) and (∞,∞). They correspond to the cases of “immediate
joint death” and “long-term joint survival”. In Figure 2, we have represented the two functions λU (u) and
λL (u) for Gumbel-Hougaard, Cook-Johnson and Normal copulas with Kendall’s tau16 equal to 0.5. We remark
that the Gumbel-Hougaard copula has upper tail dependence with λU = 2 − 2

1
θ , whereas the Cook-Johnson

copula has lower tail dependence with λL = 2−
1
θ . We verify also that the Normal copula has no upper or lower

tail dependence.

Figure 2: Tail dependence and survival copulas

2.5.4 Time-dependent association measures

In the previous paragraph, we have studied two local dependence measures. In what follows, we consider more
specifically time-dependent measures.

The cross-ratio function has been introduced by Clayton [1978] and extensively exploited by David Oakes
in several papers (see for example [121] and [122]). We remind that the cross-ratio ϑ is defined in the following
way

ϑ (t1, t2) =
λ (t1 | T2 = t2)
λ (t1 | T2 ≥ t2)

(123)

16τ is equal respectively to 1− θ−1, (θ + 2)−1 θ and 2π−1 arcsin (θ) with θ the parameter of the copula.
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In the case of a frailty model S (t1, t2) = ψ
(

ψ−1 (S1 (t1)) + ψ−1 (S2 (t2))
)

, Oakes [1989] shows that

ϑ (t1, t2) =
∂1,2S (t1, t2)× S (t1, t2)
∂1S (t1, t2)× ∂2S (t1, t2)

=
ψ′′

(

ψ−1 (S1 (t1)) + ψ−1 (S2 (t2))
)

[

ψ′
(

ψ−1 (S1 (t1)) + ψ−1 (S2 (t2))
)]2 S (t1, t2)

= −∂2ψ−1 (S (t1, t2))
∂ψ−1 (S (t1, t2))

S (t1, t2) (124)

It comes that ϑ (t1, t2) depends on t1 and t2 only trough the survival function S (t1, t2):

ϑ (t1, t2) = ϑ (S (t1, t2)) (125)

Oakes shows then a stronger result.

Theorem 16 (Oakes [1989, Theorem 1, p. 488]) Suppose that S (t1, t2) is an absolutely continuous bivari-
ate survival function whose cross-ratio function ϑ (t1, t2) is expressible as ϑ (S (t1, t2)). Then, S (t1, t2) satisfies
the Archimedean representation S (t1, t2) = ψ

(

ψ−1 (S1 (t1)) + ψ−1 (S2 (t2))
)

.

With this theorem, we have implicitely a bijection between the set of frailty models and the set of functions
ϑ (S (t1, t2)). Moreover, if we denote ϑ (S (t1, t2)) by ϑ (s), Oakes shows that the Laplace transform ψ is uniquely
determined in terms of ϑ (s) by

ψ−1 (y) =
∫ 1

y
exp

(∫ c

t
s−1ϑ (s) ds

)

dt (126)

up to a constant multiple c < 1. For example, in the case of the Cook-Johnson copula, we have

ϑ (t1, t2) = −θ (θ + 1) [S (t1, t2)]
−(θ+2)

−θ [S (t1, t2)]
−(θ+1) S (t1, t2)

= θ + 1

= ϑ (s) (127)

We verify that the inverse of the Laplace transform is given by the expression (126):

ψ−1 (y) =
∫ 1

y
exp

(

(θ + 1)
∫ c

t
s−1 ds

)

dt

=
∫ 1

y
cθ+1t−(θ+1) dt

=
cθ+1

θ
(

y−θ − 1
)

∝
(

y−θ − 1
)

(128)

For the Gumbel-Hougaard copula, we have

ϑ (t1, t2) = −

(

θ (θ − 1) [− lnS (t1, t2)]
θ−2 + θ [− lnS (t1, t2)]

θ−1
)

S−2 (t1, t2)

−θS−1 (t1, t2) [− lnS (t1, t2)]
θ−1 S (t1, t2)

= 1− θ − 1
lnS (t1, t2)

(129)
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and

ϑ (s) = 1− θ − 1
ln s

(130)

Using the expression (126), we obtain

ψ−1 (y) =
∫ 1

y
exp

(∫ c

t

(

1− θ − 1
ln s

)

s−1 ds
)

dt

=
∫ 1

y
c (− ln c)1−θ t−1 (− ln t)θ−1 dt

=
c (− ln c)1−θ

θ
(− ln y)θ

∝ (− ln y)θ (131)

which is the inverse of the Laplace transform ψ (x) = exp
(

−x
1
θ

)

. In the case where the model is not frailty,
the cross-ratio could not be expressed as a function of the joint survival function. For example, if we consider
the FGM copula C (u1, u2) = u1u2 (1− (1− u1) (1− u2)), the expression of ϑ (t1, t2) is

ϑ (t1, t2) =
∂1,2C̆ (S1 (t1) ,S2 (t2))× C̆ (S1 (t1) ,S2 (t2))

∂1C̆ (S1 (t1) ,S2 (t2))× ∂2C̆ (S1 (t1) ,S2 (t2))

=
[2 (S1 (t1) + S2 (t2))− 4S1 (t1)S2 (t2)]

[

S2
1 (t1) S2 (t2) + S1 (t1) S2

2 (t2)− S2
1 (t1) S2

2 (t2)
]

[2S1 (t1)S2 (t2) + S2
2 (t2)− 2S1 (t1) S2

2 (t2)] [2S1 (t1) S2 (t2) + S2
1 (t1)− 2S2

1 (t1)S2 (t2)]
(132)

At the points (S1 (t1) ,S2 (t2)) = (0.5, 0.5) and (S1 (t1) ,S2 (t2)) = (0.1875, 1), we have C̆ (S1 (t1) ,S2 (t2)) =
0.1875. But ϑ (t1, t2) takes two different values 0.75 and 0.8966.

Oakes [1989] shows that the cross-ratio ϑ (t1, t2) is related to a conditional version of Kendall’s tau:

τ? (t1, t2) = Pr {(T1 − T ′1) (T2 − T ′2) > 0 | min (T1, T ′1) = t1, min (T2, T ′2) = t2} −
Pr {(T1 − T ′1) (T2 − T ′2) < 0 | min (T1, T ′1) = t1, min (T2, T ′2) = t2} (133)

where (T1, T2) and (T ′1, T
′
2) are two independent and identically distributed or i.i.d. random vector, each with

joint survival function S. Because we have

ϑ (t1, t2) =
Pr {(T1 − T ′1) (T2 − T ′2) > 0 | min (T1, T ′1) = t1, min (T2, T ′2) = t2}
Pr {(T1 − T ′1) (T2 − T ′2) < 0 | min (T1, T ′1) = t1, min (T2, T ′2) = t2}

(134)

it comes that

ϑ (t1, t2) =
1 + τ? (t1, t2)
1− τ? (t1, t2)

(135)

In the case where the survival times are PQD, we know that τ ≥ 0. “Thus we should expect ϑ (t1, t2) ≥ 1
for many (t1, t2). But ϑ (t1, t2) can be less than 1” (Anderson and Louis [1995], page 672). However, in

most cases, we verify that ϑ (t1, t2) ≥ 1 if C̆ � C
⊥

. The principal interest of ϑ (t1, t2) is to give an information
about the strength of the local dependence at the point (t1, t2). For example, Figure 3 shows that two copulas
with same Kendall’s tau may have different values of ϑ (t1, t2). Moreover, we remark the particular behaviour
of the Gumbel-Hougaard copula. Even for θ close to one — the independent case, ϑ (∞,∞) = ∞. Figure 4
corresponds to the Normal copula with Kendall’s tau equal to 0.5. We see that ϑ (t1, t2) can not be expressible
as ϑ (S (t1, t2)): given a level curve s = C̃ (u1, u2), we verify that ϑ (s) is not constant.
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Figure 3: Cross-ratio of the Gumbel-Hougaard and Cook-Johnson copulas

Figure 4: Cross-ratio of the Normal copula
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There are a lot of other time-dependent measures of dependence. For example, Anderson, Louis, Holm
and Harvald [1992] proposes to use the conditional expected residual life and the conditional probability.
Manatunga and Oakes [1996] define a truncated Kendall’s tau τ∗ (t1, t2) which corresponds to the Kendall’s
tau of the conditional survival function S given that T1 > t1 and T2 > t2. Fan, Prentice and Hsu [2000]
consider a class of measures that are weighted averages of local dependence measures:

D (t1, t2) =
∫ t1

0

∫ t2

0

κ (ϑ (x1, x2))
∫ t1
0

∫ t2
0 ∂1,2$ (x1, x2) dx1 dx1

∂1,2$ (x1, x2) dx1 dx1 (136)

where κ is a function of ϑ and $ is a weight function. For example, if $ is the survival function S and κ is the
identity function, we obtain

D (t1, t2) =
∫ t1

0

∫ t2

0

ϑ (x1, x2)
∫ t1
0

∫ t2
0 f (x1, x2) dx1 dx1

f (x1, x2) dx1 dx1 (137)

2.5.5 Concepts of ageing

In this paragraph, we consider some notions of ageing, which are useful to build reliability classes. In particular,
we show how they are (or not) related to the properties of copulas. The idea is the same as for the class of
bivariate extreme value distributions: their margins are of the three-types (Gumbel, Fréchet or Weibull) and the
copula is necessarily an extreme value copula — C (ut

1, u
t
2) = Ct (u1, u2) for t > 0.

As remarked by Hutchinson and Lai [1990,1991], several definitions are possible to extend univariate ageing
properties. For example, a distribution F is said to be IFR (Increasing Failure Rate) if S (t | x) is nonincreasing
in x for each t ≥ 0. In the bivariate case, there are several variants of the IFR property. The more general
extension is the following: S (x1 + t1, x2 + t2) /S (x1, x2) decreases in x1, x2 ≥ 0 for all t1, t2 ≥ 0. However,
this condition is too restrictive to obtain a “large” reliability class. One may prefer to define the bivariate IFR
property by the condition:

S (x1 + t, x2 + t) /S (x1, x2) decreases in x1, x2 ≥ 0 for all t ≥ 0 (138)

We note that it is equivalent to C̆ (S1 (x1 + t) ,S2 (x2 + t)) /C̆ (S1 (x1) ,S2 (x2)) decreases in x1, x2 ≥ 0 for all
t ≥ 0. Because we expect that the margins belongs to the corresponding univariate reliability class, we assume
that Sn (x + t) /Sn (x) decreases in x ≥ 0 for all t ≥ 0. It comes that

C̆ (S1 (x1 + t) ,S2 (x2 + t))

C̆ (S1 (x1) ,S2 (x2))
=

C̆ (S1 (t | x1)S1 (x1) ,S2 (t | x2)S2 (x2))

C̆ (S1 (x1) ,S2 (x2))

=
C̆ (v1 (u1) · u1, v2 (u2) · u2)

C̆ (u1, u2)
(139)

with vn (un) = Sn (t | xn) and un = Sn (xn). The idea is to define an IFR reliability class thanks to IFR copulas.
In this special case, it seems very difficult to characterize all IFR copulas even if we use the fact that vn (un)
decreases in un.

In general, we encounter these difficulties for almost all reliability classes. For example, Basu [1971] shows
that the only absolutely continuous survival function with constant hazard rate λ (t1, t2) = λ is the survival
function of two independent exponential random variables. Let us now consider the LMP class:

S (x1 + t1, x2 + t2) = S (x1, x2)S (t1, t2) for all x1, x2 ≥ 0 and t1, t2 ≥ 0 (140)

Marshall and Olkin [1967] show that the solution of this functional equation is the product of two exponential
survival functions. So, this property is too strong, and one may prefer to define the LMP class by the following
assumption:

S (x1 + t, x2 + t) = S (x1, x2)S (t, t) for all x1, x2 ≥ 0 and t ≥ 0 (141)
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By using the fact that the margins are LMP, we have C̆ (u1v1, u2v2) = C̆ (u1, u2) C̆ (v1, v2) with un = Sn (xn)
and vn = Sn (t). If we define a LMP copula as a copula function which verifies C̆ (u1v, u2v) = C̆ (u1, u2) C̆ (v1, v2)
for all u1, u2, v1, v2 in [0, 1], it comes that if the copula and the margins are LMP, the distribution F is LMP
too. For example, C⊥ is a LMP copula. However, the previous characterization appears too strong: if we solve
the functional equation C̆ (u1v, u2v) = C̆ (u1, u2) C̆ (v1, v2), the only solution is C⊥. We could then use the
relationships between u1, u2, v1 and v2 to obtain a better characterization.

Definition 17 A copula function is LMP if it verifies

C̆
(

u1+α1 , uα2(α1+α3)
)

= C̆ (u, uα2α3) C̆ (uα1 , uα1α2) (142)

for all α1, α2, α3 ≥ 0.

We remark that the survival copula of a LMP copula is necessarily an extreme value copula.

Another interesting property is the IFRA (Increasing Failure Rate on Average) notion. Block and Savits [1980]
define it as follows: F is said to be IFRA if Eα [h (T1, T2)] ≤ E [hα (T1, T2) /α] for all continuous nonnegative
increasing functions h and α ∈ [0, 1]. In this case, we could show that if F is IFRA, then Sα (t1, t2) ≤ S (αt1, αt2).

Proposition 18 If the survival copula verifies C̆α (u1, u2) ≤ C̆ (uα
1 , uα

2 ) for all u1, u2 in [0, 1] and α ∈ [0, 1],
and if the margins are IFRA, then the distribution F is IFRA.

Proof. We have C̆α (S1 (t1) ,S2 (t2)) ≤ C̆ (Sα
1 (t1) ,Sα

2 (t2)). But C̆ (Sα
1 (t1) ,Sα

2 (t2)) ≤ C̆ (S1 (αt1) ,S2 (αt2))
because the margins are IFRA. It comes that

C̆α (S1 (t1) ,S2 (t2)) ≤ C̆ (Sα
1 (t1) ,Sα

2 (t2)) ≤ C̆ (S1 (αt1) ,S2 (αt2)) (143)

We consider a last reliability class. If we define the bivariate notion of NBU (New Better than Used) as
follows:

S (x1 + t1, x2 + t2) ≤ S (x1, x2)S (t1, t2) for all x1, x2 ≥ 0 and t1, t2 ≥ 0 (144)

we will say that a NBU copula is a copula function such that

C̆ (u1v1, u2v2) ≤ C̆ (u1, u2) C̆ (v1, v2) (145)

for all u1, u2, v1, v2 in [0, 1].

Proposition 19 If the copula and the margins are NBU, then the distribution F is NBU.

Proof. We have

C̆ (S1 (x1)S1 (t1) ,S2 (x2)S2 (t2)) ≤ C̆ (S1 (x1) ,S2 (x2)) C̆ (S1 (t1) ,S2 (x2)) (146)

and

C̆ (S1 (x1 + t1) ,S2 (x2 + t2)) ≤ C̆ (S1 (x1)S1 (t1) ,S2 (x2)S2 (t2)) (147)

Example 20 The bivariate exponential distribution (69) given by Gumbel [1960] is NBU. To show that, we
remark that the margins are NBU and the copula verifies

C̆ (u1v1, u2v2) = u1v1u2v2 exp (−θ ln (u1v1) ln (u2v2))

= u1u2 exp (−θ ln u1 ln u2) · v1v2 exp (−θ ln v1 ln v2) · exp (−θ (lnu1 ln v2 + ln v1 ln u2))

≤ C̆ (u1, u2) C̆ (v1, v2) (148)
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2.6 Deheuvels copulas and empirical processes of survival times

In this paragraph, we consider empirical processes of survival times. We just give here the main idea, because
it may be too long to define the notations and the mathematical tools. Moreover, a forthcoming working paper
considers the more general problem of empirical processes and copulas. In this working paper, a section is
dedicated to empirical processes of survival times.

If we consider classic textbooks on empirical processes (Csörgő [1983], Shorack and Wellner [1986],
Pollard [1990]), we remark that they do not use copulas, or more precisely the term “copula”. Nevertheless,
they are briefly mentioned in some books (Gaenssler and Stute [1987], van der Vaart and Wellner
[1996]). However, if one read between the lines, copulas are almost everywhere. We may then study empirical
processes in the point of view of copulas. One of the main tool is also the empirical dependence (copula)
function17 Ĉn defined by Deheuvels [1978,1979b]. For example, Deheuvels [1980] shows that under general
assumptions, we have

max
u

∣

∣

∣Ĉn (u)− E
[

Ĉn (u)
]∣

∣

∣ = O

(

(

n
ln (ln n)

)−1/2
)

(149)

with probability one. Let Wn (u) = n1/2
(

Ĉn (u)−C⊥ (u)
)

be the empirical dependence process. Deheuvels
[1981] shows another important result. In the space C [0, 1] (see Billingsley [1999]), the empirical dependence
process converges weakly to a limiting Gaussian process on [0, 1]N :

Wn (u) −→ W∞ (u) (150)

with

E [W∞ (u)W∞ (v)] =
N
∏

i=1

min (ui, vi)−
N

∑

i=1

min (ui, vi)
N
∏

i 6=j

uivi + (N − 1)
N
∏

i=1

uivi (151)

The problem is now to define similar canonical decomposition of empirical processes of survival times. This
problem has been solved by Dabrowska [1996] in the general case. Let be the product-integral (see Gill
and Johansen [1990]). In the univariate case, we have

S (t) =

(0,t]

(1− dΛ) (152)

where Λ is a measure defined by Λ (dt) = F (dt) /S (t). In the multivariate case, this relationship becomes
S (t) = (1 + L (dt)) where L is called the iterated odds ratio measure or cumulant measure (Gill [1994]). In
the bivariate case, the previous expression takes a simple form because S (t1, t2) = S1 (t1)S2 (t2) eΛ(t1,t2). In
the general multivariate case, the expression of L is very complicated (see Gill and Johansen [1990] or Gill
[1992b]). However, L could be viewed as a dependence measure. Using the previous framework, Dabrowska
[1996] provides a decomposition of survival functions in terms of signed interaction measures. Moreover, she
generalizes to censored data Deheuvels’s decomposition of empirical copula functions.

3 Competing risks models

Competing risks (CR) models arise in several fields: reliability, biometrics, finance, etc. They correspond to the
study of any failure process in which they are different causes of failure. To present the concepts used in CR
models, we follows the seminal paper of Prentice, Kalbfleisch, Peterson, Flournoy, Farewell and
Breslow [1978] (referred to as ‘PK’ in the sequel).

17In this paragraph, n denotes the size of the sample.
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3.1 Some definitions

Let τ be the failure time with survival function Sτ and hazard rate λτ . The type of failure is denoted by
nτ ∈ {1, . . . , N}. The cause-specific hazard function λ∗n is defined by

λ∗n (t) = lim
∆→0+

1
∆

Pr {t ≤ τ ≤ t + ∆ | τ ≥ t, nτ = n} (153)

If we assume that the types of failure are distinct, we obtain

λτ (t) =
N

∑

n=1

λ∗n (t) (154)

We have also

Sτ (t) = exp

(

−
∫ t

0

N
∑

n=1

λ∗n (s) ds

)

=
N
∏

n=1

S∗n (t) (155)

with S∗n (t) = exp
(

−
∫ t
0 λ∗n (s) ds

)

. Note however that S∗n is not a survival function. With this framework,
the model could be identified, that is, “the cause-specific hazard functions have the potential to be directly
estimated from data” (PK [1978]).

Another framework is to formulate the CR model in terms of latent failure times T1, . . . , TN . In this case,
the failure time corresponds to

τ = min (T1, . . . , TN ) (156)

We have

Sτ (t) = Pr {min (T1, . . . , TN ) ≥ t}
= C̆ (S1 (t) , . . . ,SN (t)) (157)

with C̆ the survival copula of the latent times T1, . . . , TN . The model with latent failure times have been
criticized by PK [1978] because of identifiability problems. For example, Tsiatis [1975] shows that for every
joint survival function of latent failure times, a joint survival function of independent latent failure times
gives the same observable data. However, Heckman and Honoré [1989] show that the model could be (non-
parametrically) identified under some conditions. If one could write the joint survival function S as

S (t1, . . . , tN ) = C̆
(

e−Z1(t1)φ1(X), . . . , e−ZN (tN )φN (X)
)

(158)

some regulatory conditions on C̆, Zn and φ ensure that these functions are identified (Heckman and Honoré
[1989], Honoré [1993]). This result has been extended by Abbring and Van den Berg [2000], which prove
that the conditions can be weakened for frailty models. Moreover, if the copula is known, “competing risks data
are sufficient to identify the marginal survival functions” (Zheng and Klein [1994,1995]).

In this section, we use the representation in terms of latent failure times. It is the most familiar in finance,
and non-parametrically identification problems could be ignored in most of financial problems.
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3.2 Distribution of the failure time

The failure time is characterized by the following theorem.

Theorem 21 The survival function of the failure time τ is given by the diagonal section of the survival distri-
bution:

Sτ (t) = C̆ (S1 (t) , . . . ,SN (t)) (159)

Proof. We have

Sτ (t) = Pr {min (T1, . . . , TN ) ≥ t}
= Pr {T1 ≥ t, . . . , TN ≥ t}
= C̆ (S1 (t) , . . . ,SN (t)) (160)

We can then establish related results about the distribution and the density. It comes that

Fτ (t) = 1− C̆ (S1 (t) , . . . ,SN (t))

= 1− C̆ (1− F1 (t) , . . . , 1− FN (t)) (161)

and

fτ (t) =
N

∑

n=1

∂nC̆ (S1 (t) , . . . ,SN (t))× fn (t) (162)

In the case where the survival times are i.i.d., we retreive the well-known results

Fτ (t) = 1− [1− F1 (t)]N (163)

and

fτ (t) =
N

∑

n=1





[1− F1 (t)]× . . .× [1− F1 (t)]
︸ ︷︷ ︸

N−1 times





 f1 (t)

= N [1− F1 (t)]N−1 f1 (t) (164)

Example 22 Let us consider the case of the Normal copula with matrix ρ of parameters. We define P(n) as
the N ×N permutation matrix with encoding p =

(

1 · · · n− 1 n + 1 · · · N n
)

and ρ̄(n) as follows

ρ̄(n) = P(n)ρP>(n) (165)

The density of τ is then

fτ (t) =
N

∑

n=1

C
(

S?
1 (t) , . . . ,S?

n−1 (t) ,S?
n+1 (t) , . . . ,S?

N (t) ;ρ?
(n)

)

× fn (t) (166)

with C the Normal copula function of dimension N − 1. The matrix ρ?
(n) is defined as follows

ρ?
(n) =

[

ρ̄11−
1

ρn,n
ρ̄>12ρ̄

>
12

]

\ σ \ σ> (167)
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with

ρ̄(n)
N×N

=





ρ̄11
(N−1)×(N−1)

ρ̄12
(N−1)×1

ρ̄22
1×1



 (168)

and

σ � σ =





























ρ1,1 −
ρ2

1,n

ρn,n

...

ρn−1,−1 −
ρ2

n−1,n

ρn,n

ρn+1,n+1 −
ρ2

n+1,n

ρn,n

...

ρN,N − ρ2
N,n

ρn,n





























(169)

Note also that

S?
i (t) = Φ









Φ−1 (Si (t))− ρi,n

ρn,n
Φ−1 (Sn (t))

√

ρi,i −
ρ2

i,n

ρn,n









(170)

We consider now some illustrations based on Weibull survival times Tn ∼ Weibull
(

λ0
n, γn

)

. We have

Sn (t) = exp
(

−λ0
ntγn

)

(171)

The hazard rate λn (t) is then λ0
nγntγn−1 and the expression of the density is fn (t) = λ0

nγntγn−1e−λ0
ntγn . We

remark that the hazard rate is increasing in the case γ > 1 and decreasing in the case 0 < γ < 1 (see Figures
5 and 7). If γ is equal to one, the hazard rate is constant and we obtain an exponential survival time. If we
assume that the survival copula is the Gumbel-Hougaard copula with parameter θ ≥ 1, we obtain

Sτ (t) = exp
(

−
[

(− lnS1 (t))θ + . . . + (− lnSN (t))θ
] 1

θ
)

= exp



−

[

N
∑

n=1

(

λ0
ntγn

)θ

]
1
θ


 (172)

and

fτ (t) =

[

N
∑

n=1

(

λ0
ntγn

)θ

]
1
θ−1 [

N
∑

n=1

γn

t
(

λ0
ntγn

)θ

]

exp



−

[

N
∑

n=1

(

λ0
ntγn

)θ

]
1
θ


 (173)

In the case where the survival times are identically distributed, the failure time is a Weibull survival time
τ ∼ Weibull

(

N
1
θ λ0, γ

)

— Sτ (t) = exp
(

−N
1
θ λ0tγ

)

. Moreover if θ = 1 — the survival copula becomes the

product copula — τ ∼ Weibull
(

Nλ0, γ
)

and we say that the Weibull distribution is a min-stable distribution
(Resnick [1987]). This property explains that the survival distribution (172) have been studied in reliability
theory (Lee [1979]). Figures 6 and 8 present Sτ (t) and fτ (t) when the survival times are identically distributed.
We remark that the case γ > 1 is very different from the case γ < 1. Moreover, we see that the parameter θ
has a big influence of the failure time. Note that θ →∞ corresponds to the upper Fréchet copula. In this case,
we have τ = T1.

31



Figure 5: Weibull (0.03, 2) survival time

Figure 6: Failure time with Weibull (0.03, 2) survival times
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Figure 7: Weibull (0.5, 0.75) survival time

Figure 8: Failure time with Weibull (0.5, 0.75) survival times
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3.3 Order statistics

Theorem 23 The survival function of the order statistic Tn:N (n ≤ N) is given by the following formula

Sn:N (t) = 1− Fn:N (t) (174)

with

Fn:N (t) =
N

∑

k=n





k
∑

l=n

(−1)k−l
(

k
l

)

∑

v(F1(t),... ,FN (t))∈Z(N−k,N,1)

C (v1, . . . , vN )



 (175)

Proof. see Appendix A.3.

We remark that the failure time τ corresponds to the order statistic T1:N and we verify that

F1:N (t) =
N

∑

k=1





k
∑

l=1

(−1)k−l
(

k
l

)

∑

v(F1(t),... ,FN (t))∈Z(N−k,N,1)

C (v1, . . . , vN )





= 1−



1 +
N

∑

k=1



(−1)k
∑

v(F1(t),... ,FN (t))∈Z(N−k,N,1)

C (v1, . . . , vN )









= 1− C̆ (S1 (t) , . . . ,SN (t)) (176)

We also note that the last order statistic TN :N is the maximum of the survival times and its distribution is the
diagonal section of the multivariate distribution:

FN :N (t) = C (F1 (t) , . . . ,FN (t)) (177)

Moreover, we retreive the well known results when the survival times are i.i.d.

FN :N (t) =
N
∏

n=1

Fn (t) = FN
1 (t) (178)

It is interesting to characterize the density function of Tn:N . We have

fn:N (t) =
N

∑

k=n





k
∑

l=n

(−1)k−l
(

k
l

)

∑

v(F1(t),... ,FN (t))∈Z(N−k,N,1)

[

N
∑

m=1

1[vm 6=1]∂mC (v1, . . . , vN )× fm (t)

]



 (179)

We may also characterize other statistics which are relevant in reliability or life modelling. For example, we
could be interested in the range W = TN :N −T1:N or subranges Wn1:n2 = Tn2:N −Tn1:N (n1 < n2). However, to
derive explicit formulas, we need the joint distribution of Tn1:N and Tn2:N . In the case i.i.d., Balakrishnan
and Clifford Cohen [1991] give some tractable formula for the density. In the general case, the problem is
open. One solution is then to use Monte Carlo methods. For the computation of Sn:N (t), Monte Carlo methods
may be preferred too when N is large and n is small. We give in Table 3 an idea about the time needed to
compute Sn:N (t) for t ∈

{

−3 : 8
100 : 5

}

with the exact formula in the case where the margins are gaussian and
the copula is Gumbel-Hougaard. The computation has been done with the GAUSS software and a Pentium III
550 Mhz. Even if these times are given for indication, we remark that they dramatically increase with the
dimension N .

In Figures 9 and 10, we have reported the survival function and the density function of some order statistics
Tn:N when the copula is Cook-Johnson18 and the survival times are LN (0, 1). We may compare the true

18The parameter θ is equal to 0.5 in Figure 9.
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N�n 1 2 3 4 5 6 7 8 9 10 11 12 13
8 5 3 3 3 2 2 0 0
9 9 9 9 6 6 3 2 2 0
10 30 28 28 26 22 13 4 4 0 0
11 98 98 97 94 84 61 32 11 3 1 0
12 339 339 336 333 313 257 163 72 20 3 2 0
13 1297 1297 1296 1290 1153 1125 840 449 156 34 5 2 0

Table 3: Computational time (in hundredths of a second) for the calculus of Sn:N (t)

density of Tn:N with the estimated density based on a Monte Carlo scheme. Ns represents the number of
simulations. Figure 11 corresponds to the order statistic T5:10 with θ = 1. We remark that the estimated
density19 “converges” to the true one when the number of simulations increases. However, the rate of convergence
depends on the dimension N and very high dimensions require a large number of simulations. In Figure 12, we
have plotted the density of the range W .

Figure 9: Survival function of order statistics Tn:N

4 Statistical inference

In this section, we present some methods to estimate multivariate survival functions. We do not provide
an exhaustive review of the methods. For example, we do not consider non-parametric estimation (Hanley
and Parnes [1983], Dabrowska [1988], Fermanian [1997]) or counting processes approach (Nielsen, Gill,
Andersen and Sorensen [1992]).

19All the densities have been estimated using an Epanechnikov kernel with a left truncated point.
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Figure 10: Density function of order statistics Tn:N

Figure 11: Density function of the order statistic T5:10
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Figure 12: Density function of the range W

4.1 Maximum likelihood method

We consider the estimation problem of the vector of parameters θ of the survival function S. With a copula
structure, we have

S (t1, t2; θ) = C̆
(

S1
(

t1; θ1) ,S2
(

t2;θ2) ;θ12) (180)

with θ =
(

θ1, θ2,θ12). In this case, θ1 and θ2 are the specific parameters of the univariate survival functions,
whereas θ12 is the parameter (possibly multidimensional) of the survival copula function.

Let t = {(t1,i, t2,i) , i = 1, . . . , n} denote a sample. The log-likelihood is

` (t; θ) =
n

∑

i=1

ln f (t1,i, t2,i;θ) (181)

The ML estimate (MLE) corresponds then to

θ̂ML = arg max
θ∈Θ

` (t; θ) (182)

where Θ is the parameter space. However, dealing with survival times is not as simple, because records on
survival traits are often incomplete: survival data are usually censored or/and truncated (Leung, Elashoff
and Afifi [1997]). Censoring and truncation mechanims could be very difficult to take into account. In what
follows, we consider the mechanims which could be generally found in finance.

We use the following notations:
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• T is the survival time;

• C− is the left-censoring time;

• C+ is the right-censoring time;

• D is the observed time;

We observe the triplet
(

D, δ−, δ+)

with

D =
(

T ∧ C+)

∧
(

T ∨ C−
)

=







C− if T ≤ C−

T if C− < T ≤ C+

C+ if C+ < T
(183)

and
(

δ−, δ+)

=
(

1[T≤C−],1[T>C+]
)

. Moreover, we consider a left truncation variable Z. D is observed only
if T > Z. Let δ? denote 1[T>Z]. In what follows, bivariate survival data correspond to a sample of the form
y =

{

yi =
(

d1,i, d2,i, z1,i, z2,i, δ−1,i, δ
−
2,i, δ

+
1,i, δ

+
2,i, δ

?
1,i, δ

?
2,i

)

, i = 1, . . . , n
}

.

4.1.1 Parametric estimation

We assume that the censoring times are independent of the survival times and are not informative. Using results
of Appendix C, we have then

` (y; θ) =
n

∑

i=1

` (yi; θ) (184)

with

` (yi; θ) ∝
(

1− δ−1,i

) (

1− δ−2,i

) (

1− δ+
1,i

) (

1− δ+
2,i

)

· ln c̆
(

S1
(

d1,i; θ1) ,S2
(

d2,i; θ2) ; θ12) +
(

1− δ−1,i

) (

1− δ+
1,i

) (

1− δ−2,iδ
+
2,i

)

· ln f1
(

d1,i; θ1) +
(

1− δ−2,i

) (

1− δ+
2,i

) (

1− δ−1,iδ
+
1,i

)

· ln f2
(

d2,i;θ2) +

δ−1,i

(

1− δ−2,i

) (

1− δ+
1,i

) (

1− δ+
2,i

)

· ln
(

1− ∂2C̆
(

S1
(

d1,i; θ1) ,S2
(

d2,i; θ2) ;θ12)
)

+
(

1− δ−1,i

)

δ−2,i

(

1− δ+
1,i

) (

1− δ+
2,i

)

· ln
(

1− ∂1C̆
(

S1
(

d1,i;θ1) ,S2
(

d2,i; θ2) ; θ12)
)

+
(

1− δ−1,i

) (

1− δ−2,i

)

δ+
1,i

(

1− δ+
2,i

)

· ln ∂2C̆
(

S1
(

d1,i;θ1) ,S2
(

d2,i;θ2) ;θ12) +
(

1− δ−1,i

) (

1− δ−2,i

) (

1− δ+
1,i

)

δ+
2,i · ln ∂1C̆

(

S1
(

d1,i; θ1) ,S2
(

d2,i; θ2) ; θ12) +

δ−1,iδ
−
2,i

(

1− δ+
1,i

) (

1− δ+
2,i

)

· ln
(

1− S1
(

d1,i; θ1)− S2
(

d2,i; θ2) + C̆
(

S1
(

d1,i; θ1) ,S2
(

d2,i;θ2) ; θ12)
)

+

δ−1,i

(

1− δ−2,i

) (

1− δ+
1,i

)

δ+
2,i · ln

(

S2
(

d2,i;θ2)− C̆
(

S1
(

d1,i; θ1) ,S2
(

d2,i;θ2) ;θ12)
)

+
(

1− δ−1,i

)

δ−2,iδ
+
1,i

(

1− δ+
2,i

)

· ln
(

S1
(

d1,i; θ1)− C̆
(

S1
(

d1,i;θ1) ,S2
(

d2,i; θ2) ; θ12)
)

+
(

1− δ−1,i

) (

1− δ−2,i

)

δ+
1,iδ

+
2,i · ln C̆

(

S1
(

d1,i; θ1) ,S2
(

d2,i; θ2) ; θ12)−

δ?
1,iδ

?
2,i · ln C̆

(

S1
(

z1,i; θ1) ,S2
(

z2,i; θ2) ;θ12)−
δ?
1,i

(

1− δ?
2,i

)

· lnS1
(

z1,i;θ1)−
(

1− δ?
1,i

)

δ?
2,i · lnS2

(

z2,i; θ2) (185)

MLE is defined as the solution of (182). If the log-likelihood function does attain an interior maximum, MLE is
the solution of the score equation:

∂
∂θ

` (y; θ) = 0 (186)
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Let θ0 be the vector of true parameters. Under regularity conditions, we have

n1/2
(

θ̂ML − θ0

)

∼
as
N

(

0, I−1 (θ0)
)

(187)

where I (θ0) is the limit of the average information matrix.

In the previous approach (the full ML estimation), the parameters θ are estimated simultaneously. Never-
theless, the copula approach suggests to perform the estimation in two steps (Shih and Louis [1995]):

1. we first estimate θ1 and θ2 separately by maximizing log-likelihoods `
(

y1;θ1) and `
(

y2; θ1) of the
univariate survival data;

2. then, we estimate θ12 by maximizing `
(

y; θ̂
1
, θ̂

2
, θ12

)

given the previous estimates θ̂
1

and θ̂
2
.

This estimation method is called by Shih and Louis the two-stage parametric ML method. In Joe and Xu
[1996], it is denoted the estimation method of inference functions for margins (IFM). The estimates θ̂

1
IFM and

θ̂
2
IFM are then given by

θ̂
j
IFM = arg max

n
∑

i=1

(

1− δ−j,i
) (

1− δ+
j,i

)

ln fj
(

dj,i; θj) +
n

∑

i=1

δ−j,i
(

1− δ+
j,i

)

ln
(

1− Sj
(

dj,i; θj)) +

n
∑

i=1

(

1− δ−j,i
)

δ+
j,i lnSj

(

dj,i; θj)−
n

∑

i=1

δ?
j,i lnSj

(

zj,i; θj) (188)

for j = 1, 2. It comes that

θ̂
12
IFM = arg max `

(

y; θ̂
1
IFM, θ̂

2
IFM,θ12

)

(189)

“This procedure is computationally simpler than estimating all parameters simultaneously. A numerical opti-
mization with many parameters is much more time-consuming compared with several numerical optimizations,
each with fewer parameters” (Joe [1987], page 300). The main advantage of IFM is then the simplification of
numerical computations. Nevertheless, the IFM estimator has other desirable properties. Like the MLE, it is
asymptotically efficient (Joe and Xu [1996], Joe [1997]) and we have

n1/2
(

θ̂IFM − θ0

)

∼
as
N

(

0, G−1 (θ0)
)

(190)

with G (θ0) the information matrix of Godambe. Let us define the score function g (y; θ) in the following
way

g (y; θ) =





∂`
(

y1; θ1) / ∂θ1

∂`
(

y2; θ2) / ∂θ1

∂`
(

y;θ1,θ2, θ12) / ∂θ12



 (191)

The Godambe information matrix takes the form (Joe [1997]):

G (θ0) = D−1M
(

D−1)> (192)

where D = E
[

∂g (y; θ)> /∂θ
]

and M = E
[

g (y;θ)> g (y; θ)
]

.
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4.1.2 Semi-parametric estimation

In this paragraph, we assume that there exist non-parametric estimators of the survival functions denoted by
Ŝ1 and Ŝ2. In this case, the log-likelihood becomes

`
(

y;θ12) =
n

∑

i=1

`
(

yi; θ12) (193)

with

`
(

yi; θ12) ∝
(

1− δ−1,i

) (

1− δ−2,i

) (

1− δ+
1,i

) (

1− δ+
2,i

)

· ln c̆
(

Ŝ1 (d1,i) , Ŝ2 (d2,i) ; θ12
)

+

δ−1,i

(

1− δ−2,i

) (

1− δ+
1,i

) (

1− δ+
2,i

)

· ln
(

1− ∂2C̆
(

Ŝ1 (d1,i) , Ŝ2 (d2,i) ; θ12
))

+
(

1− δ−1,i

)

δ−2,i

(

1− δ+
1,i

) (

1− δ+
2,i

)

· ln
(

1− ∂1C̆
(

Ŝ1 (d1,i) , Ŝ2 (d2,i) ; θ12
))

+
(

1− δ−1,i

) (

1− δ−2,i

)

δ+
1,i

(

1− δ+
2,i

)

· ln ∂2C̆
(

Ŝ1 (d1,i) , Ŝ2 (d2,i) ; θ12
)

+
(

1− δ−1,i

) (

1− δ−2,i

) (

1− δ+
1,i

)

δ+
2,i · ln ∂1C̆

(

Ŝ1 (d1,i) , Ŝ2 (d2,i) ; θ12
)

+
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−
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(

1− δ+
1,i

) (

1− δ+
2,i
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· ln
(

1− Ŝ1 (d1,i)− Ŝ2 (d2,i) + C̆
(

Ŝ1 (d1,i) , Ŝ2 (d2,i) ; θ12
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+
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(
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δ+
2,i · ln

(

Ŝ2 (d2,i)− C̆
(
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(
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· ln
(
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(

Ŝ1 (d1,i) , Ŝ2 (d2,i) ; θ12
))

+
(
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) (

1− δ−2,i

)

δ+
1,iδ

+
2,i · ln C̆

(

Ŝ1 (d1,i) , Ŝ2 (d2,i) ; θ12
)

−

δ?
1,iδ

?
2,i · ln C̆

(

Ŝ1 (z1,i) , Ŝ2 (z2,i) ; θ12
)

(194)

θ12 is then estimated by maximizing the log-likelihood `
(

y; θ12). It is called the omnibus (om) estimator by
Genest and Werker [2002]. This estimation method has been first suggested20 by Genest, Ghoudi and
Rivest [1995] and Shih and Louis [1995], who both show that this semi-parametric estimator is consistent,
asymptotically normal and fully efficient at independence. Klassen and Wellner [1997] extend the efficiency
property in the case of the Normal copula.

The om estimation requires to use the non-parametric estimators Ŝ1 and Ŝ2. Even if they are both rank-based
and consistent21, Genest and Werker [2002] suggest that “it is quite improbable that the omnibus estimator

θ̂
12
om is semi-parametrically efficient for any of the most common parametric copula models”. However, this

method gives better results that parametric methods in the case of mispecifications of the margins. Durrleman,
Nikeghbali and Roncalli [2000a] suggest then to use the om estimator θ̂

12
om to check that the MLE or IFM

estimator is not biased. They give an example where both MLE and IFM estimators are biased. We consider
now a Monte Carlo study where the survival times are two Weibull random variables — T1 ∼ Weibull (0.75, 0.10)
and T2 ∼ Weibull (0.75, 0.10) — and the survival copula is a Normal copula with parameter ρ equal to 0.50. The
size n of the sample is set to 200 and the number of replications is 500. To estimate the parameters, we assume
that the survival times are exponential and the survival copula is Normal. In Figure 13, we have reported the
pdf of the different estimators for the parameter ρ. For this particular example, IFM and om give better results
than ML.

20But we find the same idea in the works of David Oakes (see for example Oakes [1994]) and Philip Hougaard (see for example
Hougaard, Harvald and Holm [1992]).

21For example, we can use the Kaplan–Meier or Nelson–Aalen estimators.

40



Figure 13: Probability density function of ρ̂MLE, ρ̂IFM and ρ̂om

4.2 EM algorithm

The EM algorithm is a general method introduced by to obtain the MLE in the case of incomplete data22

(Dempster, Laird and Rubin [1977]). Suppose that the data consists in observed (but incomplete) data Y
and missing (or latent) data Z. In terms of density, we can write

f (θ | Y ) =
f (θ | Y, Z) · f (Z | Y )

f (Z | θ, Y )
(195)

The EM algorithm consists then in two steps:

1. E-step
Find the expected value of the posterior density function:

Q
(

θ, θ(i)
)

=
∫

ln f (θ |Y, Z) f
(

Z | Y, θ(i)
)

dZ (196)

2. M-step
Maximize the conditional posterior density function:

θ(i+1) = arg max
θ∈Θ

Q
(

θ,θ(i)
)

(197)

These two steps are repeated until the algorithm converges — we note θ̂EM the estimate.

This algorithm is well adapted for frailty models. We recall that the two survival times are independent
given the frailty W . It comes that the posterior density function takes a very tractable expression (Guo and
Rodŕiguez [1992]).

22see Tanner [1996] for a good exposition.
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4.3 Kendall’s tau estimator

The estimation problem of the Clayton model has been investigated by many people (for example Oakes [1982],
Clayton and Cuzik [1985], Genest and Rivest [1993], Maguluri [1993], Glidden and Self [1999] and
Fine and Jiang [2000]). Among the different approaches, the concordance estimator proposed by Oakes [1982]
is the most simple. The idea is to estimate the parameter of the copula thanks to the method of moments and
a moment condition based on Kendall’s tau. We have

θ̂ = arg {τ (θ) = τ̂} (198)

with τ (θ) = τ
〈

C̆(θ)

〉

and τ̂ the value computed for the sample23. Phelps and Weissfeld [1997] show that
this estimator “performs well when the data are weakly dependent but does not perform well when the data are
highly dependent or independent”. Nevertheless, the Oakes method is certainly the only method that could be
implemented in finance for high dimensional problems. Let C̆ (u; θ) a survival copula of dimension N . Suppose
that all bivariate marginal copulas are in a given family with only one parameter: C̆ (u;θ) = C̆i,j (ui, uj ; θi,j)
if un = 1 for all n except i and j. Suppose moreover that θ is exactly the set of the parameters θi,j of the
bivariate copulas. In this case, we have a one-to-one correspondence between θi,j and τ (Ti, Tj). We can then
estimate the full vector of the parameters θ in a similar way as the Oakes method:

θ̂i,j = arg {τ (Ti, Tj) = τ̂ i,j} (199)

This method is particular adapted for the Normal copula24.

5 Financial applications

In this section, we consider different applications in finance25. For all of them, the survival copula is assumed
to be the Normal copula. We do not discuss the appropriateness of this assumption, because as remarked by
Bouyé, Durrleman, Nikeghbali, Riboulet and Roncalli [2000b], the Normal copula is almost the only
‘industrial’ copula function for finance.

Initially, we did the project to include a fourth financial application, which concerns the Life Time Value
(LTV). LTV is an economic measure of the (potential) worth of a customer. One of the main point of LTV is
to determine the length of time T a customer will remain active. Following Georges, Jacomy and Lazare
[2000], LTV of the individual n corresponds to

LTVn (t) =
∑

k

Pn (t, tk)Rn (tk)Sn (tk | t) (200)

where P is the discount factor, R is the (potential) rentability function and S is the survival function of T .
Using a continuous-time framework, we have

LTVn (t) =
∫

Pn (t, t + δ) Rn (t + δ)Sn (t + δ | t) dδ (201)

LTV is a powerful tool for the bank in terms of segmentation and customer relationship management (CRM).
For example, the bank could use LTV in order to decide how much to spend on keeping customers. Another
application concerns mortgage: the bank could link the contract rate on the loan with the LTV of the customer.
In general, given economic factors, LTV are assumed to be independent. However, this is not always the case.
Thus, we could think that LTV of parents and children or husband and wife are ‘correlated’. In this case, we
could view the relationship between the bank and customers as stopping times. If we assume that the stopping
times of the different members of a same family are independent, CRM will not be optimal.

23see Shih [1998] for the determination of τ̂ in presence of censoring.
24For the Normal copula, Durrleman, Nikeghbali and Roncalli [2000a] suggest to use the IFM or om estimator, which has an

analytical expression.
25Contrary to other fields, for example actuarial sciences (see for instance Carriere [1994,2000], Frees, Carriere and Valdez

[1996], Frees and Valdez [1998] and Valdez [2000]), the use of survival copulas is relatively new in finance.
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5.1 Default, prepayment and credit lifetime

Modelling mortgage terminations is essential for the bank to value correctly the market price of the loan.
For example, the price of the loan must incorporate the risk of default. Another source of termination is
prepayment (Schwartz and Torus [1989], Frachot and Gourieroux [1995]). These two risks could be
viewed as mortgage options or hidden options (Demey, Frachot and Riboulet [2000]). In general, these
risks are assumed to be independent. However, this is not a satisfactory assumption (Schwartz and Torus
[1992]).

We consider that the credit lifetime is linked to these events:

• either the counterparty defaults (thus it is the time-until-default T ?
D),

• or a prepayment occurs (it is then the time-until-prepayment T ?
P ),

• or the credit goes to the maturity (we note it T ?
M ).

We assume that the time is measured in months. In order to make comparison, we standardize the survival
times. Let TD and TP be defined as T ?

D/T ?
M and T ?

P /T ?
M . The credit lifetime corresponds then to

T = min (TD, TP , 1) (202)

Let dt denote the standardized time unit, which is equal to 1/T ?
M . We can then consider the three following

cases:

1. Default termination
We have

Pr {TD = t, TP > t | T > t− dt} · Pr {TD > t− dt, TP > t− dt} = C̆ (SD (t− dt) ,SP (t))− C̆ (SD (t) ,SP (t))
(203)

2. Prepayment termination
The probability of this event is

Pr {TD > t, TP = t | T > t− dt} · Pr {TD > t− dt, TP > t− dt} = C̆ (SD (t) ,SP (t− dt))− C̆ (SD (t) ,SP (t))
(204)

3. No default or prepayment termination
In this case, the credit goes to maturity, or there has been no default nor prepayment and the credit isn’t
over yet (“real” censorship). It comes that

Pr {TD > t, TP > t | T > t− dt} · Pr {TD > t− dt, TP > t− dt} = C̆ (SD (t) ,SP (t)) (205)

We note that we implicitely assume that when the credit lifetime and the maturity are the same, both TD and
TP are “censored” and when prepayment (respectively default) occurs, TD (respectively TP ) is censored.

We consider a database of personal loans starting from 1996 with 1050947 credits. For each credit, we
have the maturity (or the theoretical credit lifetime), the credit lifetime and the cause of termination (default,
prepayment or other). We would like to estimate the dependence between default and prepayment. More
precisely, we would like to show that the two survival times are not independent. We do the following hypothesis:
the margins SD and SP are exponential with parameter λD and λP , and the survival copula C̆ is a Normal
copula with parameter ρ. Let ti be the lifetime of credit i. The individual log-likelihood is then

` (ti, δD,i, δP,i; θ) = δD,i ln
(

C̆
(

e−λD(ti−dti), e−λP ti ; ρ
)

− C̆
(

e−λDti , e−λP ti ; ρ
)

)

+

δP,i ln
(

C̆
(

e−λDti , e−λP (ti−dti); ρ
)

− C̆
(

e−λDti , e−λP ti ; ρ
)

)

+

(1− δD,i − δP,i) ln C̆
(

e−λDti , e−λP ti ; ρ
)

(206)
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with δD,i (respectively δP,i) the indicator function that a default (respectively a prepayment) has occured. The
vector θ of parameters is of course (λD, λP , ρ). We could estimate θ by the ML method or by the IFM method.
In this last case, we estimate the hazard rates with the following estimators — λ̂D = (

∑n
i=1 ti)

−1 ∑n
i=1 δD,i and

λ̂P = (
∑n

i=1 ti)
−1 ∑n

i=1 δP,i. We do the estimation for different years from 1996 to 1999 and three categories of
credit (less than 3 years, between 3 and 5 years and from 5 to 10 years). We do not report the full results here,
but the principal conclusions are the following:

• For all years and the three categories, ρ is negative (from −96% to −43%).

• There is no significant difference between the three categories.

• Censorship affects results in a decreasing way: thus, when credits are longer, or have started very recently,
it is very unlikely to observe any default or prepayment. This is why the measure of dependence ρ is
strongly negative when there is little censorship, less negative as censorship occurs more frequently.

Of course, these results are biaised because the model is not realistic. In particular, we do not take account
interest rates movements, “Burn out” effect, etc. (Äissaoui and Frachot [1999]). Moreover, it is difficult to
assume that the hazard rate is constant (Baud and Trang [1999]). However, we believe that using a more
realistic model does not change the main conclusion: default and prepayment are negatively dependent.

5.2 Measuring the risk of credit portfolios

One of the main issue concerning credit risk is without doubt the modelling of joint default distribution. Li
[2000a] and Maccarinelli and Maggiolini [2000] suggest that copulas could be a suitable tool for such a
problem. Indeed, a default is generally described by a survival function S (t) = Pr {T > t}, which indicates the
probability that a security will attain age t. The survival time T is called the time-until-default in Li [2000a].

We consider here the problem of the risk measure of a credit portfolio and the economic capital allocation:

The estimated economic capital needed to support a bank’s credit risk exposure is generally referred
to as its required economic capital for credit risk. The process for determining this amount is analo-
gous to value at risk methods used in allocating economic capital against market risks. Specifically,
the economic capital for credit risk is determined so that the estimated probability of unexpected
credit loss exhausting economic capital is less than some target insolvency rate.

Capital allocation systems generally assume that it is the role of reserving policies to cover expected
credit losses, while it is that of economic capital to cover unexpected credit losses. Thus, required
economic capital is the additional amount of capital necessary to achieve the target insolvency rate,
over and above that needed for coverage of expected loss (document [1], page 14).

Let L denote the credit loss random variable with distribution FL. The expected loss is then equal to

EL = E [L (t0)] (207)

whereas the unexpected loss is given by

UL = TL−EL (208)

TL is the target loss. Following business pratices, TL is most of the times a credit loss quantile at a specified
confidence level α:

TL (α) = F−1
L (α) (209)
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In this case, 1− α could be interpreted as the “target insolvency rate” and depends of the rating target of the
bank. We give here the values of α which are generally used:

Rating target BBB A AA AAA
α 99.75% 99.9% 99.95% 99.97%

We finally deduce that the Capital-at-Risk CaR (or economic capital EC) of a credit portfolio is

CaR (α) = UL (α) = F−1
L (α)− E [L (t0)] (210)

To compute this Capital-at-Risk, the bank may use an internal model or a benchmak model (CreditMetrics,
CreditRisk+, KMV, etc.). These benchmark model have been extensively studied (Koyluoglu and Hickman
[1998], Gordy [2000], Crouhy, Galai and Mark [2000]) and could produce different risk measures for the
same portfolio (Crouhy [1999]). We could explain this result by the fact that these models use different
specifications about the distribution of the survival times and dependence functions. For example, Li [2000a]
shows that CreditMetrics uses implicitely a Normal copula. In CreditRisk+, the dependence function is related to
a frailty model (Coutant, Martineu, Messines, Riboulet and Roncalli [2001]). Another main difference
comes from the definition of a credit event. The Basel Commitee on Banking Supervision provides two definitions
(document [1]):

• In the default mode (DM) paradigm, “a credit loss arises only if a borrower defaults within the planning
horizon”.

• In the mark-to-market (MtM) paradigm, “a credit loss can arise in response to detoriation in an asset’s
credit quality short of default”.

In our point of view, CreditMetrics is a MtM model whereas CreditRisk+ is a DM model.

In this work, we focus on the DM paradigm (see Coutant, Martineu, Messines, Riboulet and Roncalli
[2001] for the MtM paradigm) and show how it is related to survival modelling. We consider a very simple model
where the actualized potential loss L of the credit portfolio is defined by

L (t0) =
N

∑

n=1

Pn (t0, tn) ·Bn (tn) · (1−Rn (tn)) · 1[Tn≤tn] (211)

where Pn (t0, tn) is the discount factor for the credit line n, Bn (tn) the recovery basis, Rn (tn) the recovery rate
and tn the maturity of the credit. Without any loss of generality, we assume that Pn (t0, tn) is equal to one.
We note that the previous expression of L could be written as

L (t0) =
N

∑

n=1

EADn (tn) · LGDn (tn) · PDn (tn) (212)

where EAD is the ‘exposure at default’, LGD is the ‘loss given default’ and PD is the ‘probability of default’.
We then obtain a model similar to the IRB approach defined by the Basel Commitee on Banking Supervision
(document [2]). However, we remark that we do not use a time frame of one year. We suppose that the time
horizon for monitoring the risk of the credit line n is its maturity. This is sometimes the method used in banks,
because credits could not be traded (see [1] page 17).

Another difference comes from the dependence between the probabilities of default. In the IRB approach, they
are assumed independent (before taking into account the granularity adjustment). However, the dependence
function (or “correlated defaults”) may be a key point to compute the economic capital as suggested by numerical
results of Duffie and Singleton [1999] and Lindskog and McNeil [2001]. This is particular true in the
point of view of credit portfolio managers. Let us illustrate this point. We assume that Bn (tn) is known,
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Rn (tn) is a uniform distribution U[an,bn] and Tn is an absolutely continuous survival time. In this case, the
distribution FL of the loss has a singular component in zero

FL (0) = Pr {L (t0) = 0}
= S (t1, . . . , tN ) (213)

and an absolutely continuous component in ]0,∞]. The portfolio is composed of two credit lines, which have
the same characteristics26. We assume that the survival times are exponential with λn = 0.10 and the survival
copula is Normal with a matrix ρ of parameters of the following form:

ρ =
[

1 ρ
1

]

In Figure 14, we have represented the density of the loss in the case of the product copula C⊥. We note that
the dependence function influences the value of economic capital, because of the target quantile computation.
Suppose that the bank imposes a risk limitation L to the credit portfolio manager. In Figure 15, we have
represented the probability Pr {L (t0) ≥ L} for different values of the coefficient ρ. If we set L to 100, we obtain
a probability of 26.9%, 20.3% and 14.5% when ρ takes respectively the values −0.75, 0 and 0.75. Figure 16 gives
the risk measure of this credit portfolio for three target solvency rates. In this case, we remark that differences
induced by ρ depends on the confidence level α.

Figure 14: Density of the loss and allocated economic capital

We suppose now that the credit manager would add a third credit line in the portfolio. The ‘correlation’
between the two previous default times is set to 50%. We write also the matrix ρ of the Normal copula parameters

26B = 100, tn = 10 years and [an, bn] = [25%, 75%].
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Figure 15: Probability Pr {L (t0) ≥ L} for different values of ρ

Figure 16: Capital-at-risk for different values of α
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in the following way:

ρ =





1 0.5 ρ1,3
1 ρ2,3

1





We consider the credit lines with the following characteristics:

Credit line B tn λn an bn ρ1,3 ρ2,3
A 100 10 0.10 25% 75% 0 0
B 100 10 0.10 25% 75% -0.50 -0.50
C 100 10 0.10 25% 75% 0.50 0.50
D 100 10 0.10 25% 75% -0.25 0.25
E 100 10 0.05 75% 75% 0.50 0.50
F 100 10 0.10 50% 75% 0.50 0.50
G 150 10 0.10 75% 75% 0.50 0.50

We could then compute the marginal Capital-at-Risk induced by the third credit line. We obtain the following
results:

α A B C D E F G
90% 12.2 2.6 17.9 12.4 21.9 10.9 10.1
95% 16.3 10.3 20.3 16.4 27.1 12.3 11.4
99% 24.8 20.9 26.9 24.8 35.9 15.3 12.8

If we compare the first four credit lines, the only difference between them is the values taken by the coefficients
ρ1,3 and ρ2,3. We obtain significant differences between the marginal economic capital. For the last three
credit lines, the coefficients ρ1,3 and ρ2,3 are the same as for the credit line C, but the other characteristics
are different. This example suggests that the economic capital of a credit portfolio is very sensitive to recovery
rates, hazard rates and default correlations. As a result, the copula will play a major role in the evaluation of
risk-adjusted performance using risk-adjusted return on capital (Punjabi [1998]). For example, if we define the
performance as the internal rate of return between profitability and economic capital, we obtain the following
results27 (α = 99%):

Previous portfolio A B C D E F G
14.58% 14.68% 15.12% 14.44% 14.68% 13.50% 15.80% 16.13%

It comes that the copula between the default times is important if the credit risk manager has a RAROC or
ROE objective.

A more interesting application of copulas concerns the problem of economic capital allocation, not for a
credit portfolio of one desk, but for the credit portfolio for the bank as a whole. In this case, it is interesting
to use the copula framework to define risk-bucket capital charge (Gordy [2001]) or to propose closed-form
expression of the economic capital (Ieda, Marumo and Yoshiba [2000]). These different points are studied in
Coutant, Martineu, Messines, Riboulet and Roncalli [2001].

5.3 Pricing credit derivatives

We consider now the pricing of credit derivatives. Schönbucher [1998] defines credit derivatives as “derivative
securities whose payoff depends on the credit quality of a certain issuer. This credit quality can be measured
by the credit rating of the issuer or by the yield spread of his bonds over the yield of a comparable default-free
bond”. We remind that the default-free bond price with maturity t is given at time t0 by

P (t0, t) = EQ
[

exp
(

−
∫ t

t0
r (s) ds

)

| Ft0

]

(214)

27The profitability is 150 for the first two credit lines and 100 for the third credit lines.
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with Q the martingale probability measure and r (t) the instantaneous interest rate. In the case where the
interest rate and the survival time of the defaultable bond are independent, the price of the defaultable bond
P̆ (t0, t) is given by (proposition 1 of Madan and Unal [2000]):

P̆ (t0, t) = R · P (t0, t) + (1−R) · P (t0, t) · S (t) (215)

where R is the constant recovery. In the case where S (t) is one, we have of course P̆ (t0, t) = P (t0, t). If we set
R to zero, the credit spread CS (t0, t) is

CS (t0, t) = − 1
(t− t0)

ln

(

P̆ (t0, t)
P (t0, t)

)

=
1

(t− t0)
Λ (t) (216)

We remark that the survival function (or the hazard function) of the defaultable bond plays an important role
for its pricing. In the case of the valuation of basket credit derivatives, the important thing is the joint survival
function, not only the univariate characterization of the survival times (Li [2000a]). Let us consider the case of
a default digital put option (DDP). In Schönbucher [1998], the European DDP “pays off 1 at t iff there has
been a default at some time before (or including) t”. If we assume that the interest rate and the first default
τ =

∧N
n=1 Tn are independent, the price is then

DDP (t0, t) = E
[

e−
R t

t0
r(s) ds1[τ<t]

]

= (1− Sτ (t))P (t0, t)

=
(

1− C̆ (S1 (t) , . . . ,SN (t))
)

P (t0, t) (217)

The price of this option is then influenced by the survival functions Sn (t) and the dependence C̆ between the
survival times. We consider N defaultable securities with exponential survival times (λn = 5%). We assume
that the matrix ρ of parameters is of the following form:

ρ =











1 ρ · · · ρ

1
. . .

...
1 ρ

1











(218)

The interest rate r is constant and is equal to 5%. In Figure 17, we have reported the DDP premium according to
the maturity t and the parameter ρ in the case N = 2. We verify that ρ1 ≥ ρ2 implies DDP1 (t0, t) ≤ DDP2 (t0, t).
The relation between DDP (t0, t) and the maturity t is more complex because there are two effects: 1−Sτ (t) is
an increasing function of t, but P (t0, t) is a decreasing function of t. In Figure 18, we show the impact of the
number of defaultable securities on the premium.

Let us consider now the simple case of the credit default swap (CDS) given by Li [2000b]. The product is
defined by the following characteristics:

• there are two counterparties A (the default protection seller) and B (the buyer) and a bond issuer (or a
reference security) C;

• the counterparty B pays to A a fix leg (or a swap rate) ` at time tm (m = 1, . . . ,M) until default or
maturity of the CDS;

• B receives at default a payment28 C (tm) from A if the bond issuer C defaults; however, he only receives
a fraction R (tm) of C (tm) if A defaults too.

28which is generally the difference between the recovery value and the notional value of the bond.
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Figure 17: Influence of the parameter ρ on the DDP premium

Figure 18: Influence of the number of defaultable securities on the DDP premium
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It comes that the present value of the payment is

PV (t0) =
M
∑

m=1

P (t0, tm) [C (tm) Pr {TC ∈ [tm−1, tm[ , TA > tm}+ C (tm)R (tm) Pr {TC ∈ [tm−1, tm[ , TA ≤ tm}]

(219)

The present value of the periodic legs is

V (t0) = `
min(TC∧TA,tM−1)

∑

m=0

P (t0, tm)

= `
M
∑

m=1

P (t0, tm−1) Pr {TC > tm−1, TA > tm−1} (220)

If we assume that the absence of arbitrage implies PV (t0) = V (t0), we then obtain

` =

M
∑

m=1
P (t0, tm) [C (tm) Pr {TC ∈ [tm−1, tm[ , TA > tm}+ C (tm) R (tm) Pr {TC ∈ [tm−1, tm[ , TA ≤ tm}]

M
∑

m=1
P (t0, tm−1) Pr {TC > tm−1, TA > tm−1}

(221)

` depends then on the bivariate survival function S of (TC , TA):

` =

M
∑

m=1
P (t0, tm) C (tm) [(1−R (tm)) (S (tm−1, tm)− S (tm, tm)) + R (tm) (SC (tm−1)− SC (tm))]

M
∑

m=1
P (t0, tm−1)S (tm−1, tm−1)

(222)

If R (tm) = 0, this formula becomes

` =

M
∑

m=1
P (t0, tm) C (tm) [S (tm−1, tm)− S (tm, tm)]

M
∑

m=1
P (t0, tm−1) S (tm−1, tm−1)

(223)

We consider a CDS with annual payment dates. The parameters take the following values: C (tm) = 1, TA and
TC are two exponential survival times with hazard rate λA = λC = 5%. Moreover, we assume that the interest
rate r is constant. We have reported the value of the leg ` in Figures 19 and 20. In Figure 19, we remark the
influence of the parameter ρ of the Normal copula. Moreover, we see how moves ` with parameters M or r. In
this example, we have

ρ1 ≥ ρ2 (or Cρ1
� Cρ2

) =⇒ `1 ≤ `2 (224)

In Figure 20, the interest rate r is equal to 5% and the value of M is five years. We verify that R1 (tm) ≥ R2 (tm)
implies `1 ≥ `2.

Other credit derivatives could be considered. In particular, the copula approach seems to be adequate to
price the first-to-default. A first-to-default (FtoD) is a contingent claim that pays at the first of N credit events
an amount $ (τ). We assume that the price of the FtoD is given by the expected value of the amount paid
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Figure 19: Value of the CDS leg ` with R (tm) = 0

Figure 20: Value of the CDS leg ` with R (tm) 6= 0
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$ (τ):

FtoD (t0, t) = E
[

$ (τ) e−r(τ)1[τ<t]

]

=
∫ t

t0
$ (s) e−r(s)fτ (s) ds

=
N

∑

n=1

∫ t

t0
$ (s) e−r(s)fn (s) ∂nC̆ (S1 (s) , . . . ,SN (s)) ds (225)

More generally, we could consider credit derivatives based on the nth-to-default and we note Pn:N (t0, t) the
corresponding price. We have

Pn:N (t0, t) = E
[

$ (Tn:N ) e−r(Tn:N )1[Tn:N <t]

]

=
∫ t

t0
$ (s) e−r(s)fn:N (s) ds (226)

We have of course P1:N (t0, t) = FtoD (t0, t) and PN :N (t0, t) = LtoD (t0, t) (last-to-default). In what follows, we
assume that $ (t) = 1. We consider the previous example of the DDP option. In Figures 21 and 22, we have
represented the prices FtoD (t0, t) for different values of ρ and t. The only difference between the two graphs is
the value of the hazard rate of the second defaultable security. We remark that the dependence plays a more
important role when the survival times of the defaultable securities are “close” than when the survival times of
the defaultable securities are different. In Figures 23, 24 and 25, we suppose that the hazard rates are the same
and are equal to 5%. We see the impact of the maturity t and the parameter ρ. In Figure 25, we have reported
the premium of several nth-to-default. The dashed horizontal line indicates the value of the first-to-default in
the case N = 1:

P1:1 (t0, t) =
∫ t

t0
e−r(s)f (s) ds (227)

For this example, we remark that P1:1 (t0, t) ≤ P1:N (t0, t) and P1:1 (t0, t) ≥ PN :N (t0, t) and we verify that
Pn:N (t0, t) = P1:1 (t0, t) if the dependence function is C+.

These examples show the importance of the dependence function in pricing credit derivatives. However,
we have only built illustrations with a monotone dependence. When the copula is neither PQD nor NQD, its
impact on prices could be very complex (Coutant, Martineu, Messines, Riboulet and Roncalli [2001]).
Moreover, we have studied simple credit derivatives. In the case of more complicated products, the price is
critically dependent on the survival copula. This is for example the case of CBO (Davis and Lo [2000]). We refer
interested readers to Coutant, Martineu, Messines, Riboulet and Roncalli [2001] for a more complete
treatement of these topics.
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[31] Csörgő, M. [1983], Quantile Processes with Statistical Applications, CBMS-NSF Regional Conference
Series in Applied Mathematics, 42, Society for Industrial and Applied Mathematics, Philadelphia

[32] Dabrowska, D.M. [1988], Kaplan-Meier estimate on the plane, Annals of Statistics, 16(4), 1475-1489

57



[33] Dabrowska, D.M. [1989a], Kaplan-Meier estimate on the plane: weak convergence, LIL and the boot-
strap, Journal of Multivariate Analysis, 29(2), 308-325

[34] Dabrowska, D.M. [1989b], Uniform consistency of the kernel conditional Kaplan-Meier estimate, Annals
of Statistics, 17(3), 1157-1167

[35] Dabrowska, D.M. [1996], Weak convergence of a product integral dependence measure, Scandinavian
Journal of Statistics, 23(4), 551-580

[36] David, H.A. [1970], Order Statistics, Wiley Series in Probability and Mathematical Statistics, John Wiley
& Sons, New York

[37] Davis, M. and V. Lo [2000], Modelling default correlation in bond portfolios, Tokyo-Mitsubishi Interna-
tional plc, Working Paper
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A Technical proofs

A.1 Proof of Theorem 2

In order to prove Theorem 2, we first need a lemma:

Lemma 24 Let us consider N events A1, . . . , AN . We note E =
N
⋂

n=1
An the joint event. We have

Pr
{

E
}

=
N

∑

n=1







(−1)n+1
∑

{i1,... ,in}∈{1,... ,N}

Pr
{

Ai1 , . . . , Ain

}







(228)

Proof. The following proof is adapted from Feller [1968]. In order to verify this formula, we will check if
all events appear once and only once in the following formula:

Pr
{

E
}

=
∑

Pr
{

Ai1

}

−
∑

Pr
{

Ai1 , Ai2

}

+
∑

Pr
{

Ai1 , Ai2 , Ai3

}

− . . . +

(−1)N+1
∑

Pr
{

Ai1 , . . . , AiN

}

(229)

How many times do we number the probabilities so that the event
in
⋂

i=i1
Ai occurs but not the other events

Ain+1 , . . . , AiN . The answer is the following:
(n
1

)

in the probabilities Pr
{

Ai1

}

, −
(n
2

)

in the probabilities
Pr

{

Ai1 , Ai2

}

, etc. Moreover, we remark that

n
∑

i=1

(−1)i+1
(

n
i

)

= −

[

n
∑

n=0

(−1)i
(

n
i

)

− 1

]

= − [(1− 1)n − 1]

= 1 (230)

This completes the proof.

Let C̄ be the joint survival function (Nelsen [1999], p. 28):

C̄ (u1, . . . , uN ) = Pr {U1 > u1, . . . , UN > uN} (231)

where (U1, . . . , UN ) is a vector of uniform random variables with copula C. We remark that

C̆ (S1 (t1) , . . . ,SN (tN )) = C̄ (1− S1 (t1) , . . . ,SN (tN )) (232)
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To find an expression of C̄, we denote An the event Un > un. Using the previous lemma, we have

C̄ (u1, . . . , uN ) = Pr {A1, . . . , AN}
= 1− Pr

{

A1, . . . , AN
}

= 1−
N

∑

n=1







(−1)n+1
∑

{i1,... ,in}∈{1,... ,N}

Pr
{

Ai1 , . . . , Ain

}







= 1 +
N

∑

n=1







(−1)n
∑

{i1,... ,in}∈{1,... ,N}

Pr
{

Ai1 , . . . , Ain

}







(233)

We remark that

1 = C (1, . . . , 1)

Pr
{

A1
}

= C (u1, 1, . . . , 1) = u1 (234)

Pr
{

A1, A2
}

= C (u1, u2, 1, . . . , 1)

Pr
{

A1, . . . , An
}

= C (u1, . . . , un, 1, . . . , 1) (235)

We then retreive the expression (39) page 7.

Let us consider some special cases. If N is equal to one, we have C̄ (u1) =
∑1

n=0

[

(−1)n ∑

v∈Z(1−n,1,1) C (v)
]

=

C (1) − C (u1) = 1 − u1 and C̆ (u1) = u1. It comes that S (t1) = C̆ (S1 (t1)) = S1 (t1). Univariate sur-
vival distributions can then be derived using the copula framework. If N = 2, we have C̄ (u1, u2) =

∑2
n=0

[

(−1)n ∑

v∈Z(2−n,2,1) C (v)
]

= C (1, 1)−C (u1, 1)−C (1, u2) + C (u1, u2) = 1− u1 − u2 + C (u1, u2). It comes

that C̆ (u1, u2) = u1 + u2 − 1 + C (1− u1, 1− u2). We retreive the well known result. In the case N = 3, we

have C̄ (u1, u2, u3) =
∑3

n=0

[

(−1)n ∑

v∈Z(3−n,3) C (v)
]

= C (1, 1, 1)−C (u1, 1, 1)−C (1, u2, 1)−C (1, 1, u3) +

C (u1, u2, 1)+C (u1, 1, u3)+C (1, u2, u3)−C (u1, u2, u3) = 1−u1−u2−u3+C (u1, u2)+C (u1, u3)+C (u2, u3)−
C (u1, u2, u3). It comes that

C̆ (u1, u2, u3) = u1 + u2 + u3 − 2 + C (1− u1, 1− u2) + C (1− u1, 1− u3) +

C (1− u2, 1− u3)−C (1− u1, 1− u2, 1− u3) (236)

In the case N = 4, we obtain

C̄ (u1, u2, u3, u4) = 1− u1 − u2 − u3 − u4 + C (u1, u2) + C (u1, u3) + C (u1, u4) + C (u2, u3) + C (u2, u4) +

C (u3, u4)−C (u1, u2, u3)−C (u1, u2, u4)−C (u1, u3, u4)−C (u2, u3, u4) + C (u1, u2, u3, u4)

(237)

and

C̆ (u1, u2, u3, u4) = u1 + u2 + u3 + u4 − 3 + C (1− u1, 1− u2) + C (1− u1, 1− u3) + C (1− u1, 1− u4) +

C (1− u2, 1− u3) + C (1− u2, 1− u4) + C (1− u3, 1− u4)−C (1− u1, 1− u2, 1− u3)

−C (1− u1, 1− u2, 1− u4)−C (1− u1, 1− u3, 1− u4)−C (1− u2, 1− u3, 1− u4)

+C (1− u1, 1− u2, 1− u3, 1− u4) (238)

In order to prove completely Theorem 2, we have also to show that C̆ is a copula function. We can proceed
as the bivariate case, but it is very difficult to verify that C̆ is N -increasing. We first note that the margins of
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C̆ are uniform and C̆ is a grounded function. We assume that C is absolutely continuous. It comes that

∂1,2,... ,N C̆ (u1, , . . . , uN ) = (−1)N ∂1,2,... ,NC (1− u1, , . . . , 1− uN )× (−1)× . . .× (−1)
︸ ︷︷ ︸

N times

(239)

We deduce that C̆ is a positive measure, and so C̆ is a copula function. In the case where C is not absolutely
continuous, we assume that the N -increasing property holds.

A.2 Proof of Theorem 3

Using Lemma 24 and denoting An the event Un ≤ un, we obtain

C (u1, . . . , uN ) = Pr {A1, . . . , AN}

= 1 +
N

∑

n=1







(−1)n
∑

{i1,... ,in}∈{1,... ,N}

Pr
{

Ai1 , . . . , Ain

}







=
N

∑

n=0



(−1)n
∑

v(u1,... ,un,... ,uN )∈Z(N−n,N,0)

C̄ (v1, . . . , vn, . . . , vN )





=
N

∑

n=0



(−1)n
∑

v(u1,... ,un,... ,uN )∈Z(N−n,N,0)

C̆ (1− v1, . . . , 1− vn, . . . , 1− vN )



 (240)

= (∗)

If N = 1, we have

(∗) = C̆ (1)− C̆ (1− u1)

= C̄ (0)− C̄ (u1)

= 1− (1− u1)

= u1 (241)

If N = 2, we verify that

(∗) = C̆ (1, 1)− C̆ (1− u1)− C̆ (1− u2) + C̆ (1− u1, 1− u2)

= 1− (1− u1)− (1− u2) + [1− u1 − u2 + C (u1, u2)]
= C (u1, u2) (242)

In the case N = 3, it comes that

(∗) = 1− (1− u1)− (1− u2)− (1− u3) + 1− u1 − u2 + C (u1, u2) +
1− u1 − u3 + C (u1, u3) + 1− u2 − u3 + C (u2, u3)−
[1− u1 − u2 − u3 + C (u1, u2) + C (u1, u3) + C (u2, u3)−C (u1, u2, u3)]

= C (u1, u2, u3) (243)

In the case N = 4, the relationship is verified too.
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A.3 Proof of Theorem 23

We have

Fn:N (t) = Pr {Tn:N ≤ t}
= Pr {at least n of the survival times T1, . . . , TN are smaller than t}
= Fn+1:N (t) + Pr {exactly n of the survival times T1, . . . , TN are smaller than t} (244)

In the same way, we obtain

Sn+1:N (t) = Sn:N (t) + Pr {exactly n of the survival times T1, . . . , TN are smaller than t} (245)

We can use the previous relationships to determine a recurrence formula

[Sn+1:N (t)− Sn:N (t)] = a (n; N)− b (n; N) [Sn:N (t)− Sn−1:N (t)] (246)

However, using this equation to prove Theorem 23 is long and tedious. Another way to proceed is to remark
that we can write Fn:N (t) in the following manner

Fn:N (t) =
N

∑

k=n



α (k, n; N)
∑

v(F1(t),... ,FN (t))∈Z(N−k,N,1)

C (v1, . . . , vN )



 (247)

Moreover, the coefficients α (k, n;N) do not depend on the copula function and the margins. Let us then
consider the case where the copula function is the product copula C⊥ and the survival times are i.i.d. with
distribution F. In this case, we know that Fn:N is the tail probability of a binomial distribution (David [1970])

Fn:N (t) =
N

∑

k=n

(

N
k

)

Fk (t) [1− F (t)]N−k (248)

It comes that

Fn:N (t) = Fn+1:N (t) +
(

N
n

)

Fn (t) [1− F (t)]N−n

= Fn+1:N (t) +
(

N
n

)

Fn (t)
N−n
∑

k=0

(−1)k
(

N − n
k

)

Fk (t)

= Fn+1:N (t) +
N−n
∑

k=0

(−1)k
(

N
n

)(

N − n
k

)

Fk+n (t)

= Fn+1:N (t) +
N

∑

k=n

(−1)k−n
(

N
n

)(

N − n
k − n

)

Fk (t)

=
N

∑

l=n

N
∑

k=l

(−1)k−l
(

N
l

)(

N − l
k − l

)

Fk (t)

=
N

∑

k=n

k
∑

l=n

(−1)k−l
(

N
l

)(

N − l
k − l

)

Fk (t) (249)

Using the equation (247), we have also

Fn:N (t) =
N

∑

k=n

α (k, n; N)
(

N
k

)

Fk (t) (250)
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We deduce that

α (k, n;N) =

k
∑

l=n
(−1)k−l (N

l

)(N−l
k−l

)

(N
k

)

=
k

∑

l=n

(−1)k−l k!
(k − l)!l!

=
k

∑

l=n

(−1)k−l
(

k
l

)

(251)

We consider now special cases:

• N = 1

F1:1 (t) = F1 (t)

• N = 2

F2:2 (t) = C (F1 (t) ,F2 (t))

F1:2 (t) = F1 (t) + F2 (t)−C (F1 (t) ,F2 (t))

• N = 3

F3:3 (t) = C (F1 (t) ,F2 (t) ,F3 (t))

F2:3 (t) = C (F1 (t) ,F2 (t)) + C (F1 (t) ,F3 (t)) + C (F2 (t) ,F3 (t))− 2 ·C (F1 (t) ,F2 (t) ,F3 (t))

F1:3 (t) = F1 (t) + F2 (t) + F3 (t)−C (F1 (t) ,F2 (t))−C (F1 (t) ,F3 (t))−C (F2 (t) ,F3 (t)) +

C (F1 (t) ,F2 (t) ,F3 (t))

• N = 4

F4:4 (t) = C (F1 (t) ,F2 (t) ,F3 (t) ,F4 (t))

F3:4 (t) = C (F1 (t) ,F2 (t) ,F3 (t)) + C (F1 (t) ,F2 (t) ,F4 (t)) + C (F1 (t) ,F3 (t) ,F4 (t)) +
C (F2 (t) ,F3 (t) ,F4 (t))− 3 ·C (F1 (t) ,F2 (t) ,F3 (t) ,F4 (t))

F2:4 (t) =
∑

j>i

C (Fi (t) ,Fj (t))− 2
∑

k>j>i

C (Fi (t) ,Fj (t) ,Fk (t)) + 3 ·C (F1 (t) ,F2 (t) ,F3 (t) ,F4 (t))

F1:4 (t) =
∑

i

Fi (t)−
∑

j>i

C (Fi (t) ,Fj (t)) +
∑

k>j>i

C (Fi (t) ,Fj (t) ,Fk (t))−

C (F1 (t) ,F2 (t) ,F3 (t) ,F4 (t))
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• N = 5

F5:5 (t) = C (F1 (t) ,F2 (t) ,F3 (t) ,F4 (t) ,F5 (t))

F4:5 (t) =
∑

l>k>j>i

C (Fi (t) ,Fj (t) ,Fk (t) ,Fl (t))− 4 ·C (F1 (t) ,F2 (t) ,F3 (t) ,F4 (t) ,F5 (t))

F3:5 (t) =
∑

k>j>i

C (Fi (t) ,Fj (t) ,Fk (t))− 3
∑

l>k>j>i

C (Fi (t) ,Fj (t) ,Fk (t) ,Fl (t)) +

6 ·C (F1 (t) ,F2 (t) ,F3 (t) ,F4 (t) ,F5 (t))

F2:5 (t) =
∑

j>i

C (Fi (t) ,Fj (t))− 2
∑

k>j>i

C (Fi (t) ,Fj (t) ,Fk (t)) +

3
∑

l>k>j>i

C (Fi (t) ,Fj (t) ,Fk (t) ,Fl (t)) + 4 ·C (F1 (t) ,F2 (t) ,F3 (t) ,F4 (t) ,F5 (t))

F1:5 (t) =
∑

i

Fi (t)−
∑

j>i

C (Fi (t) ,Fj (t)) +
∑

k>j>i

C (Fi (t) ,Fj (t) ,Fk (t))−

∑

l>k>j>i

C (Fi (t) ,Fj (t) ,Fk (t) ,Fl (t)) + C (F1 (t) ,F2 (t) ,F3 (t) ,F4 (t) ,F5 (t))

B Conditional distribution in the Normal copula

Let us consider the N−copula function C (u). We partition the vector u at the nth row to give

u =
[

u1

u2

]

=

























u1
...

un−1

un
...

uN

























(252)

The conditional distribution of U1 given U2 is equal to u2 is given by the Bayes Theorem:

C1|2 (u) = Pr {U1 ≤ u1 | U2 = u2}

=
Pr {U1 ≤ u1, U2 = u2}

Pr {U2 = u2}
(253)

Another expression of C1|2 is

C1|2 (u) = lim
h2→0

Pr {U1 ≤ u1,u2 ≤ U2 ≤ u2 + h2}
Pr {u2 ≤ U2 ≤ u2 + h2}

= lim
h2→0

C (u1,u2 + h2)−C (u1,u2)
C (1,u2 + h2)−C (1,u2)

=
∂n,... ,NC (u1,u2)
∂n,... ,NC (1,u2)

(254)

In the case where n = N , we retreive the result

Pr {U1 ≤ u1, . . . , UN−1 ≤ uN−1 | UN = uN} = ∂NC (u1, . . . , uN ) (255)
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The relationship between the conditional distributions C1|2 and F1|2 is given by the following equation

F1|2 (x1, . . . , xN ) = C1|2 (F1 (x1) , . . . ,FN (xN )) (256)

To prove this result, we remark that

∂n,... ,NF (x1,x2) = F1|2 (x1,x2) ∂n,... ,NF (+∞,x2) (257)

Using the fact that F (x1, . . . , xN ) = C (F1 (x1) , . . . ,FN (xN )), it comes that

F1|2 (x1, . . . , xN ) =
∂n,... ,NC (F1 (x1) , . . . ,FN (xN ))

N
∏

i=n
fi (xi)

∂n,... ,NC (F1 (+∞) , . . . ,Fn−1 (+∞) ,Fn (xn) , . . . ,FN (xN ))
N
∏

i=n
fi (xi)

=
∂n,... ,NC (F1 (x1) , . . . ,FN (xN ))

∂n,... ,NC (1, . . . , 1,Fn (xn) , . . . ,FN (xN ))
(258)

In the case of the Normal distribution, we can show that if X ∼ N (0, ρ), then the conditional distribution
of X1 given that X2 is equal to x2 is normal with mean µ1|2 and covariance Σ1|2 where29

µ1|2 = ρ12ρ
−1
22 x2 (259)

and

Σ1|2 = ρ11 − ρ12ρ
−1
22 ρ>12 (260)

It comes that

C1|2 (u1,u2;ρ) = Φ (x̄1; ρ̄) (261)

with x̄1 =
[

Φ−1 (u1)− ρ12ρ
−1
22 Φ−1 (u2)

]

\σ, ρ11−ρ12ρ
−1
22 ρ>12 = σ � σ>� ρ̄ and σ = diag

1
2

(

ρ11 − ρ12ρ
−1
22 ρ>12

)

Note that we can express this conditional probability as a function of the Normal copula of dimension n − 1
because we have

C1|2 (u1,u2;ρ) = C
(

Φ
([

Φ−1 (u1)− ρ12ρ
−1
22 Φ−1 (u2)

]

\ σ
)

;
[

ρ11 − ρ12ρ
−1
22 ρ>12

]

\ σ \ σ>
)

(262)

C Contributions to the likelihood

C.1 The case of censoring

In the bivariate case, we observe
(

D1, D2, δ−1 , δ−2 , δ+
1 , δ+

2

)

. Moreover, we assume that the distribution of X =
(

D1, D2, C−1 , C−2 , C+
1 , C+

2

)

is of the form

C⊥ (

C (F1 (t1) ,F2 (t2)) ,C⊥ (

G−
1

(

c−1
)

,G−
2

(

c−2
)

,G+
1

(

c+
1

)

,G+
2

(

c+
2

)))

(263)

That’s imply that the censoring times are independent, and that the survival times are independent of the
censoring times. We could then distinguish the following cases:

• If neither T1 nor T2 is censored, we have

Pr {D1 ≤ d1, D2 ≤ d2} ∝ Pr {T1 ≤ d1, T2 ≤ d2}
= 1− S1 (d1)− S2 (d2) + C̆ (S1 (d1) ,S2 (d2)) (264)

and

L ∝ c̆ (S1 (d1) ,S2 (d2)) f1 (d1) f2 (d2) (265)

29see Kotz, Balakrishnan and Johnson [2000] page 112.
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• If T1 is right-censored —
(

δ−1 , δ−2 , δ+
1 , δ+

2

)

= (0, 0, 1, 0), we have

Pr {D1 ≤ d1, D2 ≤ d2} ∝ Pr
{

C+
1 ≤ d1, T2 ≤ d2, T1 > C+

1

}

=
∫∫∫

1[c≤d1,t2≤d2,t1>c]f (t1, t2) g+
1 (c) dt1 dt2 dc

=
∫ d1

0

[

∫ ∞

c

∫ d2

0
f (t1, t2) dt1 dt2

]

g+
1 (c) dc

=
∫ d1

0

[

S1 (c)− C̆ (S1 (c) ,S2 (d2))
]

g+
1 (c) dc (266)

and

L ∝ ∂2C̆ (S1 (d1) ,S2 (d2)) f2 (d2) g+
1 (d1) (267)

Symetrically, if T2 is right-censored —
(

δ−1 , δ−2 , δ+
1 , δ+

2

)

= (0, 0, 0, 1), we have

L ∝ ∂1C̆ (S1 (d1) ,S2 (d2)) f1 (d1) g+
2 (d2) (268)

• If T1 is left-censored —
(

δ−1 , δ−2 , δ+
1 , δ+

2

)

= (1, 0, 0, 0), we have

Pr {D1 ≤ d1, D2 ≤ d2} ∝ Pr
{

C−1 ≤ d1, T2 ≤ d2, T1 ≤ C−1
}

=
∫∫∫

1[c≤d1,t2≤d2,t1≤c]f (t1, t2) g−1 (c) dt1 dt2 dc

=
∫ d1

0

[

∫ c

0

∫ d2

0
f (t1, t2) dt1 dt2

]

g−1 (c) dc

=
∫ d1

0

[

1− S1 (c)− S2 (d2) + C̆ (S1 (c) ,S2 (d2))
]

g−1 (c) dc (269)

and

L ∝
(

1− ∂2C̆ (S1 (d1) ,S2 (d2))
)

f2 (d2) g−1 (d1) (270)

Symetrically, if T2 is left-censored —
(

δ−1 , δ−2 , δ+
1 , δ+

2

)

= (0, 0, 0, 0), we have

L ∝
(

1− ∂1C̆ (S1 (d1) ,S2 (d2))
)

f1 (d1) g−2 (d2) (271)

• If T1 and T2 are right-censored —
(

δ−1 , δ−2 , δ+
1 , δ+

2

)

= (0, 0, 1, 1), we have

Pr {D1 ≤ d1, D2 ≤ d2} ∝ Pr
{

C+
1 ≤ d1, C+

2 ≤ d2, T1 > C+
1 , T2 > C+

2

}

=
∫∫∫∫

1[c1≤d1,c2≤d2,t1>c1,t2>c2]f (t1, t2) g+
1 (c1) g+

2 (c2) dt1 dt2 dc1 dc2

=
∫ d1

0

∫ d2

0

[∫ ∞

c1

∫ ∞

c2

f (t1, t2) dt1 dt2

]

g+
1 (c1) g+

2 (c2) dc1 dc2

=
∫ d1

0

∫ d2

0
C̆ (S1 (c1) ,S2 (c2)) g+

1 (c1) g+
2 (c2) dc1 dc2 (272)

and

L ∝ C̆ (S1 (d1) ,S2 (d2)) g+
1 (d1) g+

2 (d2) (273)
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• If T1 and T2 are left-censored —
(

δ−1 , δ−2 , δ+
1 , δ+

2

)

= (1, 1, 0, 0), we have

Pr {D1 ≤ d1, D2 ≤ d2} ∝ Pr
{

C−1 ≤ d1, C−2 ≤ d2, T1 ≤ C−1 , T2 ≤ C−2
}

=
∫∫∫∫

1[c1≤d1,c2≤d2,t1≤c1,t2≤c2]f (t1, t2) g−1 (c1) g−2 (c2) dt1 dt2 dc1 dc2

=
∫ d1

0

∫ d2

0

[∫ c1

0

∫ c2

0
f (t1, t2) dt1 dt2

]

g−1 (c1) g−2 (c2) dc1 dc2

=
∫ d1

0

∫ d2

0

[

1− S1 (c1)− S2 (c2) + C̆ (S1 (c1) ,S2 (c2))
]

g−1 (c1) g−2 (c2) dc1 dc2

(274)

and

L ∝
(

1− S1 (d1)− S2 (d2) + C̆ (S1 (d1) ,S2 (d2))
)

g−1 (d1) g−2 (d2) (275)

• If T1 is right–censored and T2 is left-censored —
(

δ−1 , δ−2 , δ+
1 , δ+

2

)

= (0, 1, 1, 0), we have

Pr {D1 ≤ d1, D2 ≤ d2} ∝ Pr
{

C+
1 ≤ d1, C−2 ≤ d2, T1 > C+

1 , T2 ≤ C−2
}

=
∫∫∫∫

1[c1≤d1,c2≤d2,t1>c1,t2≤c2]f (t1, t2) g+
1 (c1) g−2 (c2) dt1 dt2 dc1 dc2

=
∫ d1

0

∫ d2

0

[∫ ∞

c1

∫ c2

0
f (t1, t2) dt1 dt2

]

g+
1 (c1) g−2 (c2) dc1 dc2

=
∫ d1

0

∫ d2

0

[

S1 (c1)− C̆ (S1 (c1) ,S2 (c2))
]

g+
1 (c1) g−2 (c2) dc1 dc2 (276)

and

L ∝
(

S1 (d1)− C̆ (S1 (d1) ,S2 (d2))
)

g+
1 (d1) g−2 (d2) (277)

Symetrically, if T1 is left–censored and T2 is right-censored —
(

δ−1 , δ−2 , δ+
1 , δ+

2

)

= (1, 0, 0, 1), we have

L ∝
(

S2 (d2)− C̆ (S1 (d1) ,S2 (d2))
)

g−1 (d1) g+
2 (d2) (278)

C.2 The case of left truncation

As for the case of censoring, we distinguish different cases:

• We observe (D1, D2) iff T1 > Z1 and T2 > Z2 — (δ?
1, δ

?
2) = (1, 1). We have

Pr {D1 ≤ d1, D2 ≤ d2 | Z1 = z1, Z2 = z2} =
Pr {D1 ≤ d1, D2 ≤ d2}
Pr {T1 > z1, T2 > z2}

=
Pr {D1 ≤ d1, D2 ≤ d2}

C̆ (S1 (z1) ,S2 (z2))
(279)

• We observe D1 iff T1 > Z1 — (δ?
1, δ

?
2) = (1, 0). We have

Pr {D1 ≤ d1, D2 ≤ d2 | Z1 = z1} =
Pr {D1 ≤ d1, D2 ≤ d2}

S1 (z1)
(280)

Symetrically, we have

Pr {D1 ≤ d1, D2 ≤ d2 | Z2 = z2} =
Pr {D1 ≤ d1, D2 ≤ d2}

S2 (z2)
(281)
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