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Abstract

In this paper, we explore the Loss Distribution Approach (LDA) for computing the capital charge of a bank
for operational risk where LDA refers to statistical/actuarial methods for modelling the loss distribution.
In this framework, the capital charge is calculated using a Value-at-Risk measure. In the first part of the
paper, we give a detailed description of the LDA implementation and we explain how it could be used for
economic capital allocation. In the second part of the paper, we compare LDA with the Internal Measurement
Approach (IMA) proposed by the Basel Committee on Banking Supervision to calculate regulatory capital for
operational risk. LDA and IMA are bottom-up internal measurement models which are apparently different.
Nevertheless, we could map LDA into IMA and give then some justifications about the choice done by
regulators to define IMA. Finally, we provide alternative ways of mapping both methods together.

1 Introduction

For financial institutions, risk has several components: credit risk, market risk, other types of risk such as
operational risk (Figure 1). Under the 1988 Accord, the Basel Committee on Banking Supervision recognises that
the capital charge related to credit risk implicitly covers other risks. Reflecting that risks other than credit and
market risks can be substantial, operational risk are now explicitly concerned by the New Basel Capital Accord.
A recent survey issued by the Risk Management Group suggests that economic capital allocation for operational
risk ranges between 15-25% for the majority of banks.

As a result, there is a growing pressure from supervision authorities on the management of operational
risk by financial institutions. A common industry definition of the scope of operational risk is as follows: “the
risk of direct or indirect loss resulting from inadequate or failed internal processs, people and systems or from
external events”. If legal risk is generally included in this definition, reputational and strategic risks are not.
This definition focuses on causes of loss, called event type, but do not precise their effects (loss type), although
both event type and loss type should be identified when recording loss data. Since event risks can be identified
objectively in a consistent manner accross banks, the Committee believes that this is appropriate for both risk
management and measurement. The operational risk is now receiving and will receive the same regulatory
treatment imposed on credit and market risks. As for these two types of risk, the regulatory treatment is now
at a stage of demanding standard computations of the unexpected loss, but it appears a commitment to turn in
a near future to an internal-based model. As a result, banks would be allowed to build an internal model based
on a mix of internal/external data and on an in-house methodology.
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‡The last version of this paper can be downloaded at the web page http://gro.creditlyonnais.fr.

1



Loss Distribution Approach for operational risk

For operational risk capital charge, an evolutionary framework of four stages is proposed. The first one,
also called the Basic Indicator Approach (BIA), is the most straightforward approach. The required capital is
determined by multiplying a financial indicator, such as gross income, by a fixed percentage (called the ‘alpha’
factor). The Standardised Approach (SA) differs from the latter in that banks would divide their activities
into a number of standardised business units and business lines. Within each business line, the capital charge
is calculated by multiplying an indicator, such as gross income or asset size of the business line, by a fixed
percentage (called the ‘beta’ factor). The total capital charge will be the simple summation of the capital
required accross each of the business lines. In both cases, a possible calibration mechanism for ‘alpha’ and
‘beta’ parameters would be based on 20% of current regulatory capital. The Internal Measurement Approach
(IMA) provides banks to use their internal loss data as inputs for a capital calculation but in a way given
by supervisors. Operational risk is categorised according to a matrix of business lines and operational risk
types, which would be standardised by supervisors. The required capital within each business line/loss type
combination will be calculated by multiplying the expected loss by a fixed percentage (called the ‘gamma’
factor). Expected loss is computed as the product of an exposure indicator, standardised by supervisors as a
proxy for the amount of risk of each business line/loss type combination, and two terms based on internal data:
the probability of loss event and a parameter representing the loss given that event. Since the gamma factor is
computed on a industry based distribution, it will be possible to adjust capital charge by a risk profile index,
which reflects the bank’s specific risk profile compared to industry. The total capital charge will be the simple
sum of the required capital accross each of business line and risk type combinations. The most sophisticated
approach, which this paper will focus on, is the Loss Distribution Approach (LDA). Under this approach, the
bank estimates, for each business line/risk type cell, the probability distributions of the severity (single event
impact) and of the one year event frequency using its internal data. With these two distributions, the bank
then computes the probability distribution of the aggregate operational loss. The total required capital is the
sum of the Value-at-Risk of each business line and event type combination.

The aim of this paper is threefold:

• First, we develop a sound and rather exhaustive methodological framework in order to support LDA, which
is seen — in the document [1] — as the ultimate goal of a regulatory incentive-based process. Although
LDA is not yet allowed, probably because only few banks are able to implement it, there are no doubts
that LDA will be a matter of great concern for all financial institutions.

• Secondly, we focus on statistical issues related to the available data. Indeed, from a methodological point
of view, LDA may appear as less complicated to build than internal models for credit risk (or market risk).
In line with credit risk models, one has to compute a mathematical mix of two probability distributions:
one for the frequency of events and one for the severity. However, contrary to credit risk methodology,
the two underlying distributions do not need to be as sophisticated. Nevertheless, the quality and the
quantity of data are of greater concern when dealing with operational risk, as the available data could be
rare and/or of poor quality. Furthermore, an operational event (i.e. a default in the credit risk vocabulary)
is often endogeneous as it is related to the internal processes of the institution. As a result, the use of
internal data (optimally combined with external ones) is an essential requirement if one wants to obtain
a sound, incentive-oriented, internal model. Practically, it is thus necessary to have a careful statistical
treatment of all shortcomings around data, such as biased, poor-quality and non-representative data.

• Thirdly, we try to fill the gap between LDA and IMA. As far as we understand, IMA is an attempt to
mimick LDA through a simplified, easy-to-implement way. While LDA requires the use of disaggregated
data (on a single event basis), the implementation of IMA would be based on aggregated data like the
number of events, the total loss by event type, an exposition index, etc. To ensure a good approximation
of LDA by IMA, a gamma factor and a risk profile index — which remains to be precisely defined —
would be added on. The third part of the paper is dedicated to the issue of designing an optimal IMA in
order to be as close as possible to LDA and simultaneously to satisfy the constraints required by an easy
implementation.

Remark 1 In the following, we use the terminology ‘event type’ which seems to be more appropriate. Never-
theless, we could replace ‘event type’ by ‘loss type’ and that will change nothing (except for the categorization).
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Figure 1: The different categories of risk

Figure 2: Loss distribution and Value-at-Risk
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2 Loss Distribution Approach

LDA is a statistical approach which is very popular in actuarial sciences for computing aggregate loss distri-
butions1. In this section, we define the underlying mathematical model2, we give some algorithms to compute
the distribution and show how to calculate the capital charge based on a Value-at-Risk measurement of risk.
Moreover, we consider LDA as a framework for bottom-up economic capital allocation.

2.1 Computing the loss distribution

LDA is presented in appendix 6 of [1]:

Under the Loss Distribution Approach, the bank estimates, for each business line/risk type cell,
the probability distribution functions of the single event impact and the event frequency for the
next (one) year using its internal data, and computes the probability distribution function of the
cumulative operational loss.

In order to present the mathematical formulation of LDA, we have to define some concepts:

• According to the New Basel Capital Accord, we consider different business lines and event types. We use
the indices i and j to denote a given business line and a given event type.

• ζ (i, j) is the random variable which represents the amount of one loss event for the business line i and
the event type j. The loss severity distribution of ζ (i, j) is denoted by Fi,j .

• We assume that the number of events between times t and t + τ is random3. The corresponding variable
N (i, j) has a probability function pi,j . The loss frequency distribution Pi,j corresponds to

Pi,j (n) =
n

∑

k=0

pi,j (k) (1)

In LDA, the loss for the business line i and the event type j between times t and t + τ is

ϑ (i, j) =
N(i,j)
∑

n=0

ζn (i, j) (2)

Let Gi,j be the distribution of ϑ (i, j). Gi,j is then a compound distribution

Gi,j (x) =







∞
∑

n=1
pi,j (n)Fn?

i,j (x) x > 0

pi,j (0) x = 0
(3)

where ? is the convolution4 operator on distribution functions and Fn? is the n-fold convolution of F with
itself5.

1In fact, this is a very old tool (see for example the section 2.3 of Bühlmann [1970]).
2Probabilistic aspects are presented in Grandell [1991].
3τ is generally equal to one year.
4We use the following definition for convolution:

Definition 2 (Feller [1971, definition 1, p. 143]) The convolution of a bounded point function ϕ with a probability distribu-
tion F is the function defined by

u (x) =
Z +∞

−∞
ϕ (x− y)F (dy) (4)

It will be denoted by u = F ? ϕ. When F has a density f we write alternatively u = f ∗ ϕ and we have

u (x) =
Z +∞

−∞
ϕ (x− y) f (y) dy (5)

5We have

F1? = F

Fn? = F(n−1)? ? F (6)
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Figure 3: Computing the aggregate loss distribution

Remark 3 In LDA, the modelling of the aggregate loss distribution is done in two steps. We first consider a
loss severity distribution and a loss frequency distribution. Then, we obtain the aggregate loss distribution by
compounding them. We have illustrated this method in Figure 3 with ζ (i, j) ∼ LN (8, 2.2) and N (i, j) ∼ P (50).

Remark 4 We assume implicitely that the random variables ζ (i, j) are independently distributed and indepen-
dent of the number of events.

In general, there is no analytical expression of the compound distribution6. Computing the loss distribution
requires then numerical algorithms. The most used are the Monte Carlo method, the Panjer’s recursive approach
and the inverse of the characteristic function7.

• In the Monte Carlo method, the distribution Gi,j is then ‘approximated’ by the set S 〈ϑ (i, j)〉 =
{ϑs (i, j) , s = 1, . . . , S} of simulated values of the random variable ϑ (i, j). An estimate of Gi,j is then ob-
tained by the empirical distribution of S 〈ϑ (i, j)〉 (Fishman [1996]) or by the Kernel method (Silverman
[1986]).

• Panjer [1981] introduces recursive approaches to compute high-order convolutions. He shows that if

6The existence of an analytical expression is related to the infinitely divisible property of the distribution Gi,j . This is for
example the case of the negative binomial distribution, which can be written as a compound Logarithmic/Poisson distribution
(Feller [1968]).

7Heckman and Meyers [1983] list two other methods:

• In the first method, we ‘approximate’ the aggregate loss distribution with an assumed analytical distribution. For example,
we can use the Normal Power approximation or the transformed Gamma approximation of Mong [1980] (see also Venter
[1982]).

• The second method consists in the Laplace transform inversion method (Csörgó and Teugels [1990]).

Note that other methods exist (for example, Willmot and Lin [2000] propose to use Tijms approximations).

5



Loss Distribution Approach for operational risk

there exist constants c1 and c2 such that

pi,j (n) =
(

c1 +
c2

n

)

pi,j (n− 1) (7)

then the following recursion holds

gi,j (x) = pi,j (1) fi,j (x) +
∫ x

0

(

c1 + c2
y
x

)

fi,j (y) gi,j (x− y) dy (8)

Sundt and Jewell [1981] show that probability distributions that satisfy (7) are the Poisson, binomial,
negative binomial and geometric families. For example, if N (i, j) ∼ P (λi,j), we obtain

gi,j (x) = λi,je−λi,j fi,j (x) +
λi,j

x

∫ x

0
yfi,j (y) gi,j (x− y) dy (9)

• Heckman and Meyers [1983] propose to compute aggregate loss distributions using properties of its
characteristic function. Let X be a random variable with distribution H. The characteristic function of
H is then defined by

φH (t) = E
[

eitX]

=
∫ ∞

0
eitx dH (x) (10)

We remark that the characteristic function of M independent random variables is the product of their
characteristic functions

φH1?H2?···?HM
(t) = E

[

eit(X1+X2+···+XM )
]

=
M
∏

m=1

E
[

eitXm
]

=
M
∏

m=1

φHm
(t) (11)

It comes that the characteristic function of Gi,j is given by8

φGi,j
(t) =

∞
∑

n=0

pi,j (n)
[

φFi,j
(t)

]n
(13)

We finally deduce the distribution function using the Laplace transformation:

Gi,j (x) =
1
2
− 1

2πi

∫ ∞

−∞

1
t
e−itxφGi,j

(t) dt (14)

In the case where Fi,j is — or can be approximated by — a piecewise linear function or piecewise uniform
function, explicit algorithms to compute Gi,j (x) can be found in Heckman and Meyers [1983] and
Robertson [1992].

2.2 Computing the Capital-at-Risk

With LDA, the capital charge (or the Capital-at-Risk) is a Value-at-Risk measure of risk. We first consider the
CaR computation for a given business line and a given event type, and then the CaR computation for the bank
as a whole.

8For example, if N (i, j) is a Poisson P (λi,j) distributed random variable, we obtain

φGi,j
(t) = e

λi,j

�
φFi,j

(t)−1
�

(12)
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2.2.1 For one business line and one event type

The expected loss EL (i, j) and the unexpected loss UL (i, j; α) at confidence level α are then defined by

EL (i, j) = E [ϑ (i, j)] =
∫ ∞

0
x dGi,j (x) (15)

and

UL (i, j; α) = G−1
i,j (α)− E [ϑ (i, j)] = inf {x | Gi,j (x) ≥ α} −

∫ ∞

0
x dGi,j (x) (16)

The expected loss corresponds to the expected value of the random variable ϑ (i, j) whereas the unexpected
loss is the quantile for the level α minus the mean. Let us now define the Capital-at-Risk CaR to be the
capital charge for operational risk. The Basle Committee on Banking Supervision proposes to define CaR as the
unexpected loss

CaR (i, j;α) = UL (i, j; α) (17)

Nevertheless, this definition is not commonly accepted and some institutions compute CaR as the sum of the
expected loss and the unexpected loss

CaR (i, j; α) = EL (i, j) + UL (i, j; α)

= G−1
i,j (α) (18)

In this case, the Capital-at-Risk is a Value-at-Risk measure.

To compute EL (i, j) and UL (i, j; α), we can use the algorithms defined above. Moreover, we remark that
the expected loss can be computed directly with the following formula

E [ϑ (i, j)] = E [E [ϑ (i, j) | N (i, j)]]

= E [N (i, j)]× E [ζ (i, j)] (19)

The determination of UL (i, j;α) with a high accuracy is difficult. The previous numerical algorithms
induce some errors and the estimated quantile can be very far from the true quantile especially
when the severity loss distribution is heavy-tailed and the confidence level is high9. That’s why it
is very important to control the accuracy of G−1

i,j (α). This can be done by verifying that the estimated first
four moments are closed to the theoretical ones. To illustrate this problem, we consider the example of the
Log-normal/Poisson compound distribution where ζ ∼ LN (µ, σ) and N ∼ P (λ). We compute the aggregate
loss distribution by the Monte Carlo method for different numbers S of simulations. In Figures 4 and 5, we
have reported the density of the point estimators of the mean, the standard deviation and the quantiles at 90%
and 99% confidence levels10. We remark the influence of the parameter σ on the accuracy of the estimates.
However in operational risk, the parameters µ and σ can take very large values, which in turn require a great
number of simulations to achieve a good accuracy. Let us give a second illustration based on the estimate of
the standard deviation of the aggregate loss (denoted by σ [ϑ]). Figures 6 and 7 give the ratio σ̂ [ϑ] /σ [ϑ] where
σ̂ [ϑ] is the empirical estimate of σ [ϑ], computed through the Monte Carlo scheme. We see that the route to
convergence (i.e. σ̂ [ϑ] /σ [ϑ] −→ 1) is strongly influenced by the value of σ. As a conclusion, good accuracy is
a crucial point and relies on (depending on which of the three methods is used):

• the number of simulations in the Monte Carlo method,

• the number of grid points to define the aggregate loss in the Panjer algorithm,

• and the number of knots to perform the numerical integration in the characteristic function approach.
9In the Consultative Document on Operational Risk, the Basel Committee on Banking Supervision suggests to take α equal to 99%.

In economic capital project, α is related to the rating target of the bank. We give here the values of α which are generally used:

Rating target BBB A AA AAA
α 99.75% 99.9% 99.95% 99.97%

10We use an Epanechnikov kernel with 5000 replications to estimate densities. We estimate the quantile with the nonparametric
estimator of Zieliński [1999].
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Figure 4: Monte Carlo estimators with λ = 50, µ = 0.5 and σ = 0.2

Figure 5: Monte Carlo estimators with λ = 50, µ = 0.5 and σ = 1
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Figure 6: Convergence of the Monte Carlo method with λ = 10, µ = 5 and σ = 1

Figure 7: Convergence of the Monte Carlo method with λ = 10, µ = 5 and σ = 3
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2.2.2 For the bank as a whole

We consider now the problem of computing the total capital charge for the bank. For example, we may calculate
it as the simple summation of the capital charges accross each of the business lines and event types:

CaR (α) =
I

∑

i=1

J
∑

j=1

CaR (i, j; α) (20)

This is the method given by the Basel Committee on Banking Supervision in the Internal Measurement Approach.
We show in appendix B that it corresponds to the assumption that the different risks are totally positive
dependent, or roughly speaking, perfectly correlated11. A more realistic assumption is to consider that the
different losses are independent.

Let ϑ be the total loss of the bank:

ϑ =
I

∑

i=1

J
∑

j=1

ϑ (i, j) (21)

If we consider that the losses ϑ (i, j) are independent, the distribution G is the convolution of the distributions
Gi,j :

G (x) =
I
?

i=1

J
?

j=1
Gi,j (x) (22)

As previously defined, the Capital-at-Risk of the bank is either:

CaR (α) = G−1 (α)− E [ϑ] (23)

or

CaR (α) = G−1 (α) (24)

Most of the time, the total unexpected loss UL (α) is calculated using some approximations. The underlying idea
is to define UL (α) directly from the individual unexpected loss UL (i, j; α) without using the whole distribution
G. For example, one of the most popular method is the ‘square root rule’ which corresponds to

UL (α) =

√

√

√

√

I
∑

i=1

J
∑

j=1

UL2 (i, j; α) (25)

We can show easily that this rule corresponds to a Normal approximation. The main advantage of the formula
(25) is its computational tractability12. However, it can produce some significant errors. To illustrate this
problem, we consider a measure of the diversification effect, called the diversification ratio and defined by

χ (α) =
CaR+ (α)− CaR (α)

CaR+ (α)
(27)

where CaR+ (α) is the Capital-at-Risk given by the expression (20). Note that we have13 0 < χ (α) ≤ 1. We
have reported in Table 1 the values taken by χ (α) for α = 99% and α = 99.9% with internal Crédit Lyonnais
data. We remark that using Normal approximation (or the square root rule) overestimates the diversification
effect and so, underestimates the total Capital-at-Risk of the bank.

11In statistical language, it corresponds to the case where the dependence function — or the copula — is the upper Fréchet
bound.

12If we define the Capital-at-Risk as the quantile, we have

CaR (α) = EL+

vuut IX
i=1

JX
j=1

[CaR (i, j; α)− EL (i, j)]2 (26)

13In fact, CaR+ (α) is not an upper bound of Capital-at-Risk. Theoretically, they may exist situations where the total capital
charge can be greater than the sum of the individual capital charges (see Durrleman, Nikeghbali and Roncalli [2000]).
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Capital-at-Risk definition G−1 (α)− E [ϑ] G−1 (α)
α 99% 99.9% 99% 99.9%
Normal approximation 43.9% 40.9% 30.2% 35.9%
Exact computation 40.0% 37.9% 27.5% 33.2%

Table 1: LDA diversification ratio with internal Crédit Lyonnais data

2.3 Economic capital allocation

At the present time, the Basel Committee on Banking Supervision does not consider LDA to compute regulatory
capital. However, LDA may be a suitable tool for economic capital allocation:

It is not envisaged that this approach will be available at the outset of the New Basel Capital Accord,
but the Committee does not rule out the use of such an approach in the future. The industry is
therefore encouraged to continue its work on developing such approaches. Banks may seek to test
such approaches for internal capital allocations purposes (document [1], page 26).

One of the main justifications of this position is certainly the lack of data available for computing a sound LDA.
Even if the bank has an exhaustive database of losses, it can hardly be considered as representative
of potential extreme losses. In this case, LDA may largely underestimate the economic capital of the bank.
Using external data to supplement internal data may be useful. We discuss this point in paragraph 3.1.

Once we are confident about results, LDA is the appropriate tool for bottom-up economic capital allocation.
Figure 8 presents a possible scheme to perform it. First, we compute the individual Capital-at-Risk based on
internal and external data. In general, there are not enough data to consider both business lines and event
types. That’s why banks may prefer to compute Capital-at-Risk per event type in order to obtain more robust
results. Then, we compute the consolidated economic capital with or without taking into account diversification
effects. At this stage, we have to do the allocation in two steps. In the first step, we consider only event types.
Perhaps, the simplest method is to allocate the economic capital using the linear contribution method:

EC (j; α) = δ (j; α) CaR (α) (28)

where

δ (j; α) =
CaR (j; α)

J
∑

j=1
CaR (j;α)

or δ (j; α) =

I
∑

i=1
CaR (i, j; α)

I
∑

i=1

J
∑

j=1
CaR (i, j; α)

(29)

More complicated methods can be considered (Delbaen and Denault [2000], Tasche [2000]), but they are
difficult to implement. Finally, mitigation factors such as insurance coverage must be added on. Secondly, we
consider both business lines and event types. If individual Capital-at-Risk has been computed by business lines,
the economic capital for one business line i and one specific risk j is then computed according to:

EC (i, j;α) = δ (i, j;α) EC′ (j;α) (30)

where

δ (i, j; α) =
CaR (i, j; α)

I
∑

i=1
CaR (i, j;α)

(31)

and where EC′ denotes the economic capital one mitigation factors have been taken into account. In the other
cases, allocation per business line can be done by considering exposure indicators.
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Economic Capital per business line and event type







Consolidated

Economic Capital

Compute the individual
Capital-at-Risk

Compute the total
Capital-at-Risk

with diversification effects

Allocation per event type

Mitigation factors

Allocation
per business line
and event type

Figure 8: Bottom-up economic capital allocation with LDA

3 Some pratical issues

In the previous section, we consider the Loss Distribution Approach as a measurement method for operational
risk. In this section, we consider some pratical issues related to this method. Certainly the most important one
relates to the data (available data, exhaustive data and pertinent data). Even with an ideal set of data, LDA
requires some expertises.
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3.1 The data

Data is a crucial issue in operational risk management. It requires an operational risk team and an effective
organization to manage the data collection process. As we already mentionned, actual data are often rare and
of poor quality leading to the following matters of concern:

• Data are missing for some business lines and/or event types.

• Internal data are biased toward low-severity losses. For obvious reasons, extreme events may be hardly
represented in internal databases.

• Only significant losses are reported, meaning that the recorded losses are, by definition, greater than some
specific threshold. In statistical terms, this bias is refered as a truncation bias and leads to an over-
estimation of the severity. As a matter of fact, one has to find a balance between the cost of recording
very low severity data and the truncation bias or accuracy loss resulting from too high thresholds.

• Symetrically to internal data, external data are biased toward high-severity losses since only they are
publicly released. Practically, it means that an appropriate mix between internal and external data must
be imposed, in order to enhance statistical efficiency. The current Basel Committee document does not
provide any solution to this issue. Our intuition is that it can only be answered by empirical experience.
As an example, we have compared the Capital-at-Risk for Crédit Lyonnais computed by a benchmark (B)
and the Capital-at-Risk computed with a LDA based on our internal data. According to these empirical
results, we have to perform a more detailed analysis in order to understand the difference between the two
set of results. Some of these differences could be explained by different regulatory or cultural environments
and the quality of the internal control. As a result, external data must be used carefully to supplement
internal data.

Event type CaRLDA(99.9%)
CaRB(99.9%)

I 1.75
II 0.20
III 0.31
IV 0.59
V 2.20

Total 0.83

Table 2: Comparison of Capital-at-Risk

3.2 Selection criteria for the severity loss distribution

Estimation methods are presented in the next paragraphs. The problem we address here is the choice of the
distribution. Let D be the set of probability distribution functions. The question is then the following:

Which is the ‘best’ distribution in D to describe the severity loss distribution?

First, we have to define the set D. We have reported in Table 3 the most used distributions to define the
loss severity14. Secondly, we have to define a selection criteria. This is generally done using adequacy tests
of distributions. For example, we can use non-parametric tests like Anderson-Darling, Cramer-von Mises or
Kolmogorov-Smirnov goodness of fit statistics. However, these adequacy tests are not always appropriate for
all operational risks, especially for those which are associated to potential extreme losses. Let us illustrate
this point. In Figures 9 and 10, we have represented a Quantile-Quantile plot for two estimated distributions
H(1) and H(2). In both cases, it is clear that H(1) fits the data in a better way than H(2). However, there is
a difference between the two Figures. Instead, in the second Figure, we observe that H(2) fits the upper tail
better than H(1).

14Of course, other distributions could be selected (see [17], [29] or [31] for a more complete list of candidates).
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Figure 9: QQ plot without tail problems

Figure 10: QQ plot with tail problems
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Distribution Expression of the cdf or pdf Parameters

LN Log-Normal H (x) = Φ
(

ln x−µ
σ

)

(µ, σ > 0)

GEV Generalized extreme value H (x) = exp
(

−
(

1 + ξ x−α
β

)− 1
ξ

+

)

(α, β > 0, ξ)

GPD Generalized Pareto H (x) = 1−
(

1 + ξ x−α
β

)− 1
ξ

+
(α, β > 0, ξ)

W Weibull H (x) = 1− exp
(

−
(

x−α
β

)ξ

+

)

(α, β > 0, ξ)

G Gamma h (x) = (x− γ)α−1
+ [βαΓ (α)]−1 exp

(

− 1
β (x− γ)

)

(α > 0, β > 0, γ > 0)

Table 3: Some useful distributions

More specifically, we have estimated the parameters of distributions LN and GEV by maximum likelihood
for the event type “Theft and Fraud”. Then we have represented their density functions in Figure 11. The
computation of goodness of fit tests does not provide a clear answer to the question of which distribution is
the best. However, the upper tails are different. Moreover, a diagnostic based on a simplistic graphical
approach would be totally misleading as, contrary to what Figure 11 may suggest, the distribution GEV has a
fatter tail than the LN distribution.

Figure 11: Estimated LN and GEV distributions for the event type “Theft and Fraud”

In our point of view, goodness of fit statistics are not necessarily the appropriate tool to select a distribution.
More pragmatic solutions based on order statistics might be preferred, as they allow to control the upper tail of
the distribution. Let X1, . . . , Xn be i.i.d. H-distributed random variables. We define Xm:n as the mth-order
statistic in a sample size n. We then have

X1:n ≤ X2:n ≤ · · · ≤ Xm:n ≤ · · · ≤ Xn:n (32)
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Figure 12: Impact of fat tails on the largest order statistic

Let us denote Hm:n the distribution of Xm:n. David [1970] shows that the expression of Hm:n is15

Hm:n (x) =
n

∑

i=m

(

n
m

)

[H (x)]i [1−H (x)]n−i (34)

An important special case is the largest statistic Xn:n which has the distribution Hn:n (x) = [H (x)]n and the
density hn:n (x) = n [H (x)]n−1 h (x). In order to show the impact of fat tails, we consider the Normal and
Student distributions denoted respectively by N (0, 1) and t4. In Figure 12, we have represented the density
function of the corresponding largest order statistic for various values of n. Even if the two distributions are
closed, we remark that the distributions of the maximum Xn:n are very different for larger values of n. For
example, if we consider a sample size of 1000 observations, the probability to have a maximum bigger than, say,
five is 0.028% in the case of the Normal distribution whereas it is 97.65% in the case of the Student distribution!

Considering the previous event type “Theft and Fraud”, Figure 13 gives the distribution of ξn:n for n equal
respectively 1, 10, 50 and 100. We remark clearly the impact of the fatter tail of the GEV distribution. Now,
let us fix n to the number of observations in the internal database. In Figure 14, we have reported the biggest
observed losses and the survival distribution of ξn:n. Using the GEV distribution, the probability that the largest
order statistic is bigger than the observed largest loss is close to one. For the LN distribution, it is equal to
25%. How to interpret these values? Suppose that you have collected 1500 losses during five years and you
will have again 1500 losses in the next five years. There is a probability of one to observe a bigger loss with
the GEV distribution and a probability of 25% with the LN distribution. By using order statistics, we check

15We note that the density function hm:n (x) is

hm:n (x) =
n!

(m− 1)! (n−m)!
[H (x)]m−1 [1−H (x)]n−i h (x) (33)
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Figure 13: Largest order statistic for the event type “Theft and Fraud”

whether extreme risks are taken into account. For this example, we may conclude that the GEV distribution
largely overestimates extreme risks.

Remark 5 In general, the largest order statistic may be used to eliminate distributions which underestimates
extreme risks. Let xm:n be ordered observations. We define κi as follows

κi = 1−Hn:n (xn−i:n) (35)

κi is the probability to observe a maximum greater than the ith largest ordered observation. Suppose that we
use a Normal distribution for the event type “Theft and Fraud”. We obtain the following results

i κi

1− 5 ≤ 10−5

6 12%

It would mean that with a gaussian assumption, the five largest observations should not exist (or had a very
small probability to exist).

Remark 6 Other order statistics may be used, for example the ith largest order statistic or range of order
statistics (see appendix C). They provide a high magnification of the right tail of the estimated distribution. So,
when we compute a probability based on these order statistics, we obtain in most cases binary results, either one
or either zero. We can immediately verify underestimation or overestimation of extreme risks.

3.3 How to deal with aggregated losses?

In this paragraph, we turn to the estimation process. The two best known methods to estimate the parameters
of the severity distribution are the method of maximum likelihood and the method of moments.

17
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Figure 14: Survival function of the largest order statistic and observed biggest losses

However, both methods are not straightforward because the dataset of losses could contain both events and
aggregate of events. When an operational risk dataset is first created, it is not always possible to have a collect
of all the past individual events. Most of the times, only sums of losses are available.

A first solution is to drop all the observations of the dataset which do not correspond to an individual loss.
Nevertheless, this solution is not satisfactory especially when the dataset contains very few years of historical
losses. A second solution consists in taking into account all the observations (individual losses and aggregated
losses). We note ζ (i, j) the amount of an individual loss and ξ (i, j) the amount of an aggregated loss. Let us
denote the observation by the index t — do not confuse observations and time. The structure of the dataset is
(t, nt (i, j) , ξt (i, j)) where t is the observation, nt (i, j) is the number of events corresponding to this observation
and ξt (i, j) is the amount of the observed loss. If the observation is an individual loss, then the row of the dataset
is (t, 1, ζt (i, j)). So, individual losses can be considered as a special case of aggregated losses. Mathematically,
ξt (i, j) is defined as

ξt (i, j) =
nt(i,j)
∑

n=1

ζn (i, j) (36)

Let us consider the method of maximum likelihood. It requires the analytical expression of the distribution of
ξ (i, j), which is not available in most cases. That is why we have to use other estimation methods. For example,
we could consider the generalized method of moments. If we know the moments of the severity distribution, we
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Figure 15: Estimated LN distribution for the loss type “Disasters”

could obtain an expression16 of the moments of ξ (i, j):

E [ξt (i, j)] = nt (i, j)E [ζ (i, j)]

E
[

ξt (i, j)2
]

= nt (i, j)E
[

ζ (i, j)2
]

+ nt (i, j) (nt (i, j)− 1)E2 [ζ (i, j)]

E
[

ξt (i, j)3
]

= nt (i, j)E
[

ζ (i, j)3
]

+ 3nt (i, j) (nt (i, j)− 1)E [ζ (i, j)]E
[

ζ (i, j)2
]

+

nt (i, j) (nt (i, j)− 1) (nt (i, j)− 2)E3 [ζ (i, j)]

E
[

ξt (i, j)4
]

= nt (i, j)E
[

ζ (i, j)4
]

+ 4nt (i, j) (nt (i, j)− 1)E [ζ (i, j)]E
[

ζ (i, j)3
]

+

3nt (i, j) (nt (i, j)− 1)E2
[

ζ (i, j)2
]

+

6nt (i, j) (nt (i, j)− 1) (nt (i, j)− 2)E2 [ζ (i, j)]E
[

ζ (i, j)2
]

+

nt (i, j) (nt (i, j)− 1) (nt (i, j)− 2) (nt (i, j)− 3)E4 [ζ (i, j)] (37)

Parameters of the severity distribution are then easily estimated with GMM. Note that more complicated
methods of estimation such as the method of simulated moments or indirect inference exist when there are some
difficulties to implement GMM (see appendix D).

In Figure 15, we have represented the estimated LN distribution for the event type “Disasters” with different
methods. The first and second ones are GMM. In the first one, we consider all the observations (individual and
aggregated losses) and use the two following moment conditions to estimate the parameters:







ht,1 (µ, σ) = ξt − nteµ+ 1
2 σ2

ht,2 (µ, σ) =
(

ξt − nteµ+ 1
2 σ2

)2
− nte2µ+σ2

(

eσ2 − 1
) (38)

16We use the results of appendix A.
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In the second one, we replace rows corresponding to an aggregated loss by nt (i, j) rows with loss ξt (i, j) /nt (i, j),
as it is sometimes proposed. The third method is the maximum likelihood where only individual losses are
considered — all the aggregated losses are eliminated. We remark some significant differences17.

3.4 The frequency distribution

We assume generally that the number of events is a Poisson distributed random variable, i.e. N (i, j) ∼ P (λi,j).
Using the fact that the mean and the variance of a Poisson variate is the frequency parameter λ, it is easy to
estimate it. However, we could face some problems because operational risk is at an early age in the industry.
The bank has then very few complete years of operational risk events. As a result, it is also necessary to adopt a
conservative estimate of λi,j and use sensitivity analysis to measure the relationship between the capital charge
and the frequency parameter. In Figures 16 and 17, we have represented the sensitivity of CaR to λ for the five
event types. We remark that ∆ (CaR) /∆ (λ) is less than one and depends on the confidence level α. With our
data, ∆ (CaR) /∆(λ) belongs respectively to

[2
3 , 4

5

]

and
[ 1
2 , 2

3

]

for α = 99% and α = 99.9%.

However, we can not generalized the previous results, because our experience leads us to distinguish two
types of operational risks: those with potential high severity losses and those with high frequency/low severity
losses18. In the first case, we remark that an error in estimating the frequency produces a small impact on
the capital charge. In the second case, it could produce very different capital charge. The explanation is the
following:

• If the distribution is fat-tailed, the probability of two (or more) extreme loss events is very small (except
if the frequency is very high).

• In the other case, the Capital-at-Risk is not related to one extreme loss event, but to many low losses.
The frequency plays also a main role in computing CaR.

4 Comparison with the Internal Measurement Approach

At this stage, LDA is not considered as an option in the New Basel Capital Accord. Indeed, the regulatory
framework for operational risk capital charge proposes three approaches:

1. Basic Indicator Approach (BIA)
In this case, the operational risk is related to a proxy. The Basel Committee proposes to calculate the
capital charge using the gross income

CaR = α×GI (39)

where GI is the gross income.

2. Standardized Approach (SA)
In this approach, the bank’s activities are divided into standardized business lines. “Within each business
line, the capital charge is calculated by multiplying a bank’s broad financial indicator by a ‘beta’ factor”
(§27 of [1]). We have

CaR (i) = β (i)× FI (i) (40)

where FI (i) is the financial indicator of business line i. The total capital charge is then the sum of
individual capital charges:

CaR =
I

∑

i=1

CaR (i) =
I

∑

i=1

β (i)× FI (i) (41)

17However, the number of aggregate losses is very small (less than 4% of the total number of events).
18see §11 of [1].
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Figure 16: Sensitivity analysis of CaR (99%)

Figure 17: Sensitivity analysis of CaR (99.9%)
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Figure 18: Risk profile index and loss distribution

3. Internal Measurement Approach (IMA)
IMA is developed “to directly capture a bank’s underlying risk by using the bank’s internal loss data as
key inputs for capital calculation” (Mori and Harada [2001]).

In this last approach, we consider both business lines and event types. For each business line and each event
type, the capital charge is computed thanks to the following formula

CaR (i, j) = EL (i, j)× γ (i, j)× RPI (i, j) (42)

where EL is the expected loss, γ is ‘scaling factor’ and RPI is the risk profile index.

• In [1], the Basel Committee on Banking Supervision proposes that the bank estimates the expected loss
EL (i, j) with the following product

EL (i, j) = EI (i, j)× PE (i, j)× LGE (i, j) (43)

The different parameters are the exposure indicator EI (i, j), the probability of loss event PE (i, j) and the
loss given event LGE (i, j).

• The scaling factor γ (i, j) “represents a constant that is used to transform EL into risk or a capital charge”
(§36 of [1]). This is a regulatory parameter fixed by supervisors.

• The Committee proposes to use a risk profile index RPI (i, j) as an adjustment factor to capture the
difference of the loss distribution tail of the bank compared to that of the industry wide loss distribution.
The idea is to capture the leptokurtic properties of the bank loss distribution and then to transform the
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exogeneous scaling factor γ (i, j) into an internal scaling factor γ? (i, j):

CaR (i, j) = EL (i, j)× γ (i, j)
︸ ︷︷ ︸

Regulatory scaling factor

× RPI (i, j)

= EL (i, j)× γ? (i, j)
︸ ︷︷ ︸

Internal scaling factor

(44)

It is then obvious that γ (i, j) is a benchmark scaling factor. In Figure 18, we have represented the influence
of the loss distribution of the bank on the risk profil index. By definition, the RPI of the industry loss
distribution is one. If the bank loss distribution has a fatter tail than the industry loss distribution, then
RPI is larger than one. So, two banks which have the same expected loss may have different capital
charges because they do not have the same risk profil index.

In what follows, we compare IMA and LDA. In order to obtain a more tractable LDA, we assume that
the severity loss distribution is a Log-Normal LN (µ, σ) distribution whereas the frequency distribution is a
Poisson P (λ) distribution. Moreover, we suppose that the Capital-at-Risk corresponds to the quantile of the
loss distribution, and not to the unexpected loss19. In the first paragraph, we consider the scaling problem.
The other paragraphs concern the mapping of LDA into IMA and the definition of RPI.

4.1 Scaling the mean or scaling the standard deviation?

The Basel Committee on Banking Supervision has choosen to define the capital charge as a function of the
expected loss:

CaR = γ? × E [ϑ] (46)

Another solution would be to use the standard deviation instead of the mean:

CaR = κ× σ [ϑ] (47)

If we suppose that the Poisson variate is degenerated (N = 1), we obtain

γ? =
exp

(

σΦ−1 (α)
)

exp
( 1

2σ2
) (48)

and

κ =
exp

(

σΦ−1 (α)
)

exp (σ)
√

exp (σ2)− 1
(49)

We remark that the ‘gamma’ and ‘kappa’ factors do not depend on the parameter µ (the mean of the logarithm
of the losses). Moreover, if we assume that σ � 0, it comes that γ? = κeσ. The relationship between γ? and
κ is non-linear and depends on the value of σ (the standard deviation of the logarithm of the losses). σ is a
volatility measure and will influence the kurtosis of the loss distribution. In Figures 19 and 20, we remark that
the relationship between γ? and σ is more obvious than the one between κ and σ. Moreover, for high confidence
level, a larger value of σ (or a larger value of kurtosis) implies a larger value of γ?. This property is not verified
for the ‘kappa’ factor.

19In this case, we have

CaR (i, j) = EL (i, j)× [γ (i, j)× RPI (i, j)− 1]

' EL (i, j)× [γ (i, j)− 1]× RPI (i, j) (45)
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Figure 19: Relationship between the parameter σ and the scaling factor γ?

Figure 20: Relationship between the parameter σ and the scaling factor κ
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4.2 Mapping LDA into IMA

In order to write LDA as an IMA model, we try to find out the conditions under which both methods coincide,
i.e. ELLDA = ELIMA and CaRLDA = CaRIMA. It comes that the scaling factor has the following expression

γ? =
CaRIMA

ELIMA

=
CaRLDA

ELLDA

=
G−1 (α)

λ exp
(

µ + 1
2σ2

) (50)

where G−1 (α) is the quantile of ϑ for the level α. Simulations show that µ has no influence20 (or very little)
on γ?. It comes that γ? depends only on λ and σ:

γ? = γ? (λ, σ;α) (52)

We have represented this function in Figures 21 and 22.

It could be useful to have closed-form formula of γ?. That is why we consider some approximations of the
loss distribution. Using a gaussian approximation, it comes that

ϑ ∼ N
(

λ exp
(

m +
1
2
σ2

)

,
√

λ exp
(

m +
1
2
σ2

)

exp
(

1
2
σ2

))

(53)

and

γ? = 1 + Φ−1 (α)
exp

( 1
2σ2

)

√
λ

(54)

In the case of the log-normal approximation, we obtain

ϑ ∼ LN
(

m +
1
2
σ2 +

3
2

lnλ− 1
2

ln
(

λ + exp
(

σ2)) ,
√

ln
(

λ−1 exp (σ2) + 1
)

)

(55)

and

γ? =
√

λ exp
(

−1
2

ln
(

λ + exp
(

σ2)) +
√

ln
(

λ−1 exp (σ2) + 1
)

Φ−1 (α)
)

(56)

In the case of the gaussian approximation, we have these two following properties:

∀λ, σ2 > σ1 =⇒ γ?
2 > γ?

1

∀σ, λ2 > λ1 =⇒ γ?
2 < γ?

1 (57)

In the case of the log-normal approximation, these properties are almost always satisfied (for ‘realistic’ values
of λ and σ). Figures 23 and 24 illustrate them.

To give an idea about the pertinence of these approximations, we compare the values given by these approx-
imations (N and LN ) with the true values (CP). Results with internal Crédit Lyonnais data are reported in
Tables 4 and 5. In general, we remark that these approximations underestimate the scaling factor. Nevertheless,
for α equal to 99%, the differences are not very big for some event types.

20We have

G−1 (α) ' eµf (λ, σ; α) (51)
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Figure 21: Relationship between λ, σ and γ? (α = 99%)

Figure 22: Relationship between λ, σ and γ? (α = 99.9%)
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Figure 23: Gaussian approximation of the scaling factor γ?

Figure 24: Log-normal approximation of the scaling factor γ?
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Event type CP N LN
I 5.5 6.3 9.3
II 2.5 2.0 2.5
III 2.3 1.9 2.2
IV 2.0 1.7 2.0
V 3.5 2.9 4.1

Table 4: Implied ‘gamma’ factors (α = 99%)

Event type CP N LN
I 18.4 8.1 26.1
II 4.5 2.4 3.4
III 3.9 2.2 2.9
IV 3.8 2.0 2.5
V 8.5 3.5 7.1

Table 5: Implied ‘gamma’ factors (α = 99.9%)

4.3 How to define the risk profile index?

IMA is supposed to capture the essence of LDA in a simplified way. So IMA must be designed as a proxy for
LDA and then should satisfy some constraints. First, it should provide closed-form mathematical expressions,
contrary to LDA where the unexpected loss is computable only through Monte Carlo simulations or numerical
integration. Secondly, IMA should be allowed to depend only on aggregate information such as the number
of events, the total loss amount (by type of risk and business unit) but not on individual losses. Indeed, the
development of IMA as a proxy for LDA can be justified only if one refuses to use individual losses.

We first note that we can write the equation (44) as

CaR = EL×γ × γ?

γ
(58)

RPI could then be interpreted as the ratio between the bank scaling factor and the industry scaling factor. We
can then calculate it in two different ways. First, we have

RPI =
γ?

γ
=

γ? (λ, σ; α)
γ

= φα (λ, σ) (59)

In this case, RPI is related to bank parameters λ and σ. Secondly, we could write

RPI =
γ?

γ
=

γ? (λ, σ;α)
γ? (λ•, σ•; α)

= φα (λ, λ•, σ, σ•) (60)

where λ• and σ• are the industry parameters. The two expressions are equivalent, but explain the different
propositions to define the mathematical formula of RPI.

Using the gaussian approximation, we have

RPI =
1 + Φ−1 (α)

exp( 1
2 σ2)√
λ

1 + Φ−1 (α)
exp( 1

2 σ2
•)√

λ•

(61)

This formula could not be an IMA RPI formulation, because the main idea of IMA is to provide a “risk sensitive”
method to banks without doing statistical estimations. For example, if we consider the previous RPI expression,
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we have to find an approximation based on indicators which are easy to compute. If we assume that σ is high
and λ is low, we have

RPI =

√

λ•
λ
×

exp
( 1

2σ2
)

exp
( 1

2σ2
•
) (62)

An IMA RPI formulation could then be

RPIIMA = RPIf ×RPIs (63)

where RPIf and RPIs are respectively a ‘frequency’ profile index and a ‘severity’ profile index. For example,
we could take

RPIf =

√

N̄•

N̄
(64)

and

RPIs =
ω
ω•

(65)

where N̄ is the number of losses for the current year (or an average annual number of losses) and ω is the ratio
between the mean of losses and the median of losses21. So, the idea is then to obtain a tractable and robust
formula.

Let us consider the different formulas which have been proposed. The I.I.F. Taskforce on “technical” I.M.A.
issues proposes to define RPI as

RPIIIF =

√

PE•
PE

× EI•
EI

(67)

We could say that

RPIf =

√

PE•
PE

(68)

and

RPIs =

√

EI•
EI

(69)

Using our framework, we remark that RPIf could be viewed as a proxy of
√

λ•
λ . The relationship between our

‘severity’ profile index and
√

EI•
EI is less evident. Another proposition came from the Sakura Bank Ltd, which

specifies

RPISBL = 1 + c
1√
N

σ [EI]
E [EI]

(70)

The main difference between RPIIIF and RPISBL is that RPIIIF uses industry parameters and RPISBL uses only
bank parameters.

21In a LN (µ, σ) distribution, the median m is eµ. We deduce that

E [ζ]
m [ζ]

=
exp

�
µ + 1

2σ2
�

exp (µ)
= exp

�
1
2

σ2
�

(66)
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It is very difficult to say what is the best formulation of RPI without doing the calibration. In what follows,
we propose then another RPI formulation. We remind that we have

CaRLDA

ELLDA
= γ? (λ, σ; α) (71)

Regarding the latter, one can proxy λ with the average number of events N̄ , which is a natural estimator.
Consequently, the questions concerns mainly the σ parameter. In an ideal world, this parameter should be
estimated by solving a ML or GMM program but both methods would require to rely on individual losses.
However, one can define the two following aggregate statistics ζ̄ and ζmax which are respectively the average
loss and the largest loss recorded in the database. We shall now suppose that theses aggregate statistics are
easy to recover. Thus they will serve as the basic instruments around which the proxy for the CaR /EL ratio is
developed. Let Z be a standardized gaussian random variable. We have

ζ := ϕ (Z) = exp (µ + σZ) (72)

Using the fact that ϕ is a non-decreasing function, we have

ζmax = eµeσZmax (73)

and

ζ̄ = eµ

[

1
M

M
∑

m=1

eσZm

]

(74)

As a result, it comes that there exists a function ψ such that

σ = ψ
(

ζmax

ζ̄

)

(75)

and finally

CaRLDA

ELLDA
= Γ?

(

N̄ ,
ζmax

ζ̄
; α

)

(76)

So a solution would be to identify the Γ? function. For example, we could perform a (log-)linear regression of
the following type

(ln)
CaR
EL

= c1 · N̄ + c2 ·
ζmax

ζ̄
+ ε (77)

The ratio ζmax
ζ̄ has a natural interpretation. It is always above 1: more specifically, this ratio is close to 1 when

σ is near 0 and conversely. So this ratio is a natural measure of the volatility. Furthermore, we expect coefficient
c2 to be positive in the previous regression equation. At this stage, we do not have explored the Γ? function
any further. This is left for our further research.

5 Conclusion

In this paper, we have extensively developed the Loss Distribution Approach for computing the capital charge for
operational risk. Moreover, we have given some improvements to control the robustness of results. However,
even though all problems are not solved yet, LDA is (and will be) a powerful method for banks which “strongly
favour risk sensitive/quantitative methods in this area”.
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A Moments of the aggregate loss distribution

We consider the random variable ϑ =
N
∑

n=0
ζn where N and ζn are respectively the frequency and severity random

variables. Let X be a random variable (N , ζ or ϑ). We note µ́X
r the rth moment about the origin and µX

r the
rth (central) moment about the mean22. To calculate the moments, we use the following relationships
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It comes that
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22We have µ́X
r = E [Xr] and µX

r = E [(X − E [X])r].
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It is then easy to derive the central moments or other characteristics like skewness or kurtosis (see section 3.3
of Beard, Pentilkäinen and Pesonen [1984]). In the case of the compound Poisson model, we obtain very
simple formulas because we have

µ́N
1 = µN

1 = µN
2 = λ

µ́N
2 = λ (λ + 1)

µ́N
3 = λ

(

λ2 + 3λ + 1
)

µ́N
4 = λ

(

λ3 + 6λ2 + 7λ + 1
)

(80)

B General methodology to compute the total capital charge for the
bank

We remind that the total loss distribution G for the bank as a whole is computed as the convolution of the
individual aggregate distributions Gi,j :

G (x) =
I
?

i=1

J
?

j=1
Gi,j (x) (81)

In this case, we assume the independence between the random variables ϑ (i, j). We present now two methods
to introduce dependence between the different operational risks. In the first one, the dependence is introduced
directly on the random variables ϑ (i, j) whereas in the second one, the dependence is introduced on the fre-
quencies N (i, j). Even if they are different, the two methods use both copulas23. Similar ideas may be found
in Wang [1998] and Marceau, Cossette, Gaillardetz and Rioux [1999].

B.1 Correlated aggregate loss distributions

Let ϑ̆ be the vec form of the random variables ϑ (i, j). We have

ϑ̆i+I×(j−1) = ϑ (i, j) (82)

We note Ğ the distribution of the random vector ϑ̆. By definition, the margins of Ğ are the individual aggregate
loss distributions Gi,j . However, the knowledge of the margins is not sufficient to compute the total loss for the
whole bank:

ϑ =
I

∑

i=1

J
∑

j=1

ϑ (i, j) (83)

We need the dependence function or copula C
〈

Ğ
〉

. Of course, if C
〈

Ğ
〉

is the product copula C⊥, we obtain

the previous formula (81). In other cases, the distribution of ϑ may be computed using Monte Carlo simulations.
To illustrate the method, we consider the following example. We have two event types with ζ1 ∼ LN (1, 1)
and ζ2 ∼ LN (1.25, 0.5). The frequency distributions are respectively P (10) and P (12). In Figure 25, we have
represented the corresponding aggregate loss distributions. Moreover, we have reported the distribution of the
total loss ϑ = ϑ1 + ϑ2 for different Nomal copulas. When the parameter ρ of the Normal copula is equal to 0,
it is equivalent to use the product copula C⊥. When ρ is less than 0, the Normal copula C is smaller than C⊥

(C ≺ C⊥). In this case, we have a negative dependence function. Positive dependence functions correspond to
the case ρ > 0. We remark that the total loss distribution depends strongly on the value of the parameter ρ.
For example, with positive dependence functions, the total loss distribution is moved to the right. Figure 26
presents the Capital-at-Risk for different confidence levels α and different values of ρ.

The Basel Committee on Banking Supervision suggests to compute the Capital-at-Risk for the whole bank
as the simple sum of the Capital-at-Risk for each business line/event type. We will show that this method

23We do not provide a mathematical treatment of this subject and we refer interested readers to Joe [1997] or Nelsen [1999]
(see also [6] and [7] for financial applications).
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Figure 25: Impact of the dependence function on the total loss distribution

Figure 26: Impact of the parameter ρ on the Capital-at-Risk
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is equivalent to assume that the dependence function is the upper Fréchet copula C+. Let us consider two
operational risks. Using results of Frank, Nelsen and Schweizer [1987], Williamson [1989] shows that the
dependency bounds of G when the dependence function is larger than a given copula C− are

G∨ (x)≤ G (x)≤ G∧ (x) (84)

with

G(−1)
∨ (u) = inf

C−(u1,u2)=u
G(−1)

1 (u1) + G(−1)
2 (u2) (85)

and

G(−1)
∧ (u) = sup

C̃−(u1,u2)=u
G(−1)

1 (u1) + G(−1)
2 (u2) (86)

where C̃ is the dual copula of C. In the case where C− = C+, Durrleman, Nikeghbali and Roncalli
[2000] shows that

G(−1) (u) = G(−1)
∨ (u)

= G(−1)
∧ (u)

= inf
min(u1,u2)=u

F(−1)
1 (u1) + F(−1)

2 (u2)

= G(−1)
1 (u) + G(−1)

2 (u) (87)

We deduce that24

CaR (α) = CaR1 (α) + CaR2 (α) (90)

Extension to multivariate case is straightforward. So, we have the following result

C
〈

Ğ
〉

= C+ ⇐⇒ CaR (α) =
I

∑

i=1

J
∑

j=1

CaR (i, j; α) (91)

Note that C
〈

Ğ
〉

= C+ implies that there exists a random variable ξ and I × J non-decreasing functions βi,j

such that we have

ϑ (i, j) = βi,j (ξ) (92)

C+ corresponds also to the case of totally positive dependence.
24We may consider an alternate proof by using the fact that ϑ2 = G(−1)

2 (G1 (ϑ1)). Let us denote $ the function x 7→
x + G(−1)

2 (G1 (x)). We have

α = Pr {ϑ1 + ϑ2 ≤ CaR (α)}
= E �1[$(ϑ1)≤CaR(α)]

�
= G1

�
$−1 (CaR (α))

�
(88)

It comes that CaR (α) = $
�
G(−1)

1 (α)
�

and we obtain the relationship

CaR (α) = G(−1)
1 (α) + G(−1)

2

�
G1

�
G(−1)

1 (α)
��

= CaR1 (α) + CaR2 (α) (89)
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B.2 Correlated frequencies

We focus now on the ‘correlation’ between frequencies of different types of risk

E [Nk1 (t)Nk2 (t)] 6= E [Nk1 (t)]× E [Nk2 (t)] (93)

Nk (t) is generally assumed to be a Poisson variable P with mean λk. The idea is also to use a multivariate
extension of the Poisson distribution. However, multivariate Poisson distributions are relatively complicated for
dimensions higher than two (Johnson, Kotz and Balakrishnan [1997]). Let N11, N12 and N22 be three
independent Poisson variates with means λ11, λ12 and λ22. In the bivariate case, the joint distribution is
based on the variables N1 = N11 + N12 and N2 = N22 + N12. We have of course N1 ∼ P (λ1 = λ11 + λ12) and
N2 ∼ P (λ2 = λ22 + λ12). Moreover, the joint probability function is

Pr {N1 = n1, N2 = n2} =
min(n1,n2)

∑

n=0

λn1−n
11 λn2−n

12 λn
12e

−(λ11+λ22+λ12)

(n1 − n)! (n2 − n)!n!
(94)

The Pearson correlation between N1 and N2 is ρ = λ12 [(λ11 + λ12) (λ22 + λ12)]
− 1

2 and it comes that

ρ ∈

[

0, min

(
√

λ11 + λ12

λ22 + λ12
,

√

λ22 + λ12

λ11 + λ12

)]

(95)

With this construction, we have only positive dependence. In an operational risk context, it is equivalent to say
that the two risks are affected by specific and systemic risks. Nevertheless, people in charge of operational risk
in a bank have little experience with this approach and are more familiar with correlation concepts. To use this
approach, it is also necessary to invert the previous relationships. In this case, we have

λ12 = ρ
√

λ1λ2

λ11 = λ1 − ρ
√

λ1λ2

λ22 = λ2 − ρ
√

λ1λ2 (96)

In dimension K, there is a generalisation of the bivariate case by considering more than K independent Poisson
variates. However, the corresponding multivariate Poisson distribution is not tractable because the correlation
coefficients have not an easy expression.

Song [2000] suggests then an interesting alternative by using a copula C. In this case, the probability mass
function is given by the Radon-Nikodym density of the distribution function:

Pr {N1 = n1, . . . , Nk = nk, . . . , NK = nK} =
2

∑

i1=1

· · ·
2

∑

iK=1

(−1)i1+···+iK C

(

n1
∑

n=0

λn+1−i1
1 e−λ1

n!
, . . . ,

nk
∑

n=0

λn+1−ik
k e−λk

n!
, . . . ,

nK
∑

n=0

λn+1−iK
K e−λK

n!

)

(97)

Assuming a Normal copula, we note P (λ,ρ) the multivariate Poisson distribution generated by the Normal
copula with parameter ρ and univariate Poisson distributions P (λk) (to illustrate this distribution, we give an
example in the following footnote25). We have to remark that the parameter of the Normal copula ρ is not equal
to the Pearson correlation matrix, but is generally very close (see the figure 27). The Capital-at-Risk with an α
confidence level could then be calculated by assuming that N = {N1, . . . , Nk, . . . , NK} follows a multivariate
Poisson distribution P (λ,ρ). Moreover, there are no computational difficulties, because the estimation of the

25The next table contains the probability mass function pi,j = Pr {N1 = i, N2 = j} of the bivariate Poisson distribution
P (λ1 = 1, λ2 = 1, ρ = 0.5).
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parameters λ and ρ is straightforward, and the distribution can be easily obtained with Monte Carlo methods26.

C Range of order statistics

Let us consider range of order statistics Wm1,m2:n = Xm2:n − Xm1:n (1 ≤ m1 < m2 ≤ n). We can show that
the density hWm1,m2:n (w) has the following expression27

hWm1,m2:n (w) = n!
∫ ∞

−∞

[H (x)]m1−1

(m1 − 1)!
[H (x + w)−H (x)]m2−m1−1

(m2 −m1 − 1)!
[1−H (x + w)]n−m2

(n−m2)!
h (x)h (x + w) dx

(99)

For operational risk, the most interesting ranges are these of consecutive high order statistics W •
m:n = Wm−1,m:n

(with m ' n). It comes that the density of W •
m:n is (see Balakrishnan and Clifford Cohen [1991])

hW•
m:n

(w) = n!
∫ ∞

−∞

[H (x)]m−2

(m− 2)!
[1−H (x + w)]n−m

(n−m)!
h (x)h (x + w) dx (100)

For the distribution, we have28

HW•
m:n

(w) = 1− n!
∫ ∞

−∞

[H (x)]m−2

(m− 2)!
[1−H (x + w)]n−m+1

(n−m + 1)!
h (x) dx (103)

pi,,j 0 1 2 3 4 5 · · · pi,·
0 0.0945 0.133 0.0885 0.0376 0.0114 0.00268 0.368
1 0.0336 0.1 0.113 0.0739 0.0326 0.0107 0.368
2 0.00637 0.0312 0.0523 0.0478 0.0286 0.0123 0.184
3 0.000795 0.00585 0.0137 0.0167 0.013 0.0071 0.0613
4 7.28E-005 0.000767 0.00241 0.00381 0.00373 0.00254 0.0153
5 5.21E-006 7.6E-005 0.000312 0.000625 0.000759 0.000629 0.00307
...

p·,j 0.135 0.271 0.271 0.18 0.0902 0.0361 1

If ρ = −0.5, we obtain the following values for pi,j .

pi,,j 0 1 2 3 4 5 · · · pi,·
0 0.0136 0.0617 0.101 0.0929 0.058 0.027 0.368
1 0.0439 0.112 0.111 0.0649 0.026 0.00775 0.368
2 0.0441 0.0683 0.0458 0.0188 0.00548 0.00121 0.184
3 0.0234 0.0229 0.0109 0.00331 0.000733 0.000126 0.0613
4 0.00804 0.00505 0.00175 0.000407 7.06E-005 9.71E-006 0.0153
5 0.002 0.00081 0.000209 3.79E-005 5.26E-006 5.89E-007 0.00307
...

p·,j 0.135 0.271 0.271 0.18 0.0902 0.0361 1
26The simulation of 20 millions draw of the loss distribution G with 5 loss types takes less than one hour with a Pentium III 750

Mhz and the GAUSS programming language.
27We can derive this mathematical result by using the fact that the joint density of (Xm1:n, Xm2:n) is

hm1,m2:n (x1, x2) = n!
[H (x1)]m1−1

(m1 − 1)!
[H (x2)−H (x1)]m2−m1−1

(m2 −m1 − 1)!
[1−H (x2)]n−m2

(n−m2)!
h (x1) h (x2) (98)

28We use the following chain of equivalent statements:

HW•
m:n

(w) = n!
Z w

0

Z ∞

−∞

[H (x)]m−2

(m− 2)!
[1−H (x + ω)]n−m

(n−m)!
h (x) h (x + ω) dx dω

= n!
Z ∞

−∞

[H (x)]m−2

(m− 2)!
h (x)

"
[1−H (x)]n−m+1

(n−m + 1)!
−

[1−H (x + w)]n−m+1

(n−m + 1)!

#
dx

= 1− n!
Z ∞

−∞

[H (x)]m−2

(m− 2)!
[1−H (x + w)]n−m+1

(n−m + 1)!
h (x) dx (101)
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Figure 27: Relationship between the Normal copula parameter and the Pearson correlation

Figure 28: Random generation of bivariate Poisson variates P (30) and P (60)
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Figure 29: Impact of fat tails on the range statistic W •
n:n

In practice, the integration are computed numerically using a Gauss-Hermite quadrature. As for order statistics,
fat tails may have a big impact on the range statistics (see Figure 29). Because we have W •

m:n ' W •
n:n for m

close to n, we can compare the distribution of W •
n:n with the observed statistics {w•m:n,m = n, n− 1, n− 2, . . . }.

In Figure 30, we have represented the survival function of W •
n:n for two distributions and the observed ranges

{w•m:n,m = n, . . . , n− 14}. We remark that the first distribution can not explain the biggest ranges, whereas
the second distribution can not explain the lowest ranges.

D Estimation methods

D.1 The method of maximum likelihood

Let θ be the K × 1 vector of parameters to be estimated and Θ the parameter space. The likelihood for
observation t, that is the probability density of the observation t, considered as a function of θ, is denoted
Lt (θ). Let `t (θ) be the log-likelihood of Lt (θ). Given T observations, we get

` (θ) =
T

∑

t=1

`t (θ) (104)

In the last calculus, we use the fact thatZ ∞

−∞
[H (x)]h [1−H (x)]k h (x) dx =

"
[H (x)]h+1

h + 1
[1−H (x)]k

#∞
−∞

+ n
Z ∞

−∞

[H (x)]h+1

h + 1
[1−H (x)]k−1 h (x) dx

=
h!k!

(h + k + 1)!
(102)
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Figure 30: Survival function of W •
m:n (m = n, n− 1, n− 2, . . . ) and observed ranges

the log-likelihood function. θ̂ML is the Maximum Likelihood estimator if

`
(

θ̂ML

)

≥ ` (θ) ∀ θ ∈ Θ (105)

We may show that θ̂ML has the property of asymptotic normality (Davidson and MacKinnon [1993]) and
we have

√
T

(

θ̂ML − θ0

)

−→ N
(

0,J−1 (θ0)
)

(106)

with J (θ0) the Fisher information matrix. Let Jθ̂ML
be the T ×K Jacobian matrix of `t (θ) and Hθ̂ML

the
K × K Hessian matrix of the likelihood function29. The covariance matrix of θ̂ML in finite sample could be
estimated by the inverse of the negative Hessian

var
(

θ̂ML

)

=
(

−Hθ̂ML

)−1
(108)

or by the inverse of the OPG estimator

var
(

θ̂ML

)

=
(

J>θ̂ML
Jθ̂ML

)−1
(109)

There is another one called the White (or “sandwich”) estimator defined by

var
(

θ̂ML

)

=
(

−Hθ̂ML

)−1 (

J>θ̂ML
Jθ̂ML

)(

−Hθ̂ML

)−1
(110)

29These different matrices are defined by

Jθ̂ML
=

�
∂ `t
∂ θ>

���
θ=θ̂ML

�
Hθ̂ML

= ∂2 `
∂ θ ∂ θ>

���
θ=θ̂ML

(107)
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which takes into account heteroskedasticity.

D.2 Generalized method of moments

We consider that the empirical moments ht,m (θ) depend on the K × 1 vector θ of parameters. T is the number
of observations and M is the number of conditions on the moments. Let θ0 be the “true” value of θ. The
generalized method of moments is based on the assumption that

E [ht,m (θ0)] = 0 (111)

Consider ht (θ) the row vector of the elements ht,1 (θ) , . . . , ht,M (θ) and H (θ) the T ×M matrix with elements
ht,m (θ). Let g (θ) be a M × 1 vector given by

gm (θ) =
1
T

T
∑

t=1

ht,m (θ) (112)

The GMM criterion function Q (θ) is defined by:

Q (θ) = g (θ)>W−1g (θ) (113)

with W a symmetric positive definite M ×M matrix. The GMM estimator θ̂GMM corresponds to

θ̂GMM = arg min
θ∈Θ

Q (θ) (114)

Like the ML estimates, we may show that θ̂GMM has the property of asymptotic normality and we have
√

T
(

θ̂GMM − θ0

)

−→ N (0, Σ) (115)

In the case of optimal weights (W is the covariance matrix Φ of H (θ) – Hansen [1982]), we have

var
(

θ̂GMM

)

=
1
T

[

D>Φ̂−1D
]−1

(116)

with D the M ×K Jacobian matrix of g (θ) computed for the estimate θ̂GMM.

“The ML estimator can be treated as a GMM estimator in which empirical moments are the components
of the score vector” (Davidson and MacKinnon [1993]). ML method is also a special case of GMM with

g (θ) = ∂θ` (θ) and W = IK . That’s why var
(

θ̂GMM

)

is interpreted as an OPG estimator.

D.3 Simulated method of moments

To implement GMM, we have to define the orthogonal conditions. So, we need analytical expressions for the
moment conditions. When analytical expressions are not available, Duffie and Singleton [1993] suggest to
use simulated moment conditions. This method is very easy to implement and the only thing that differs from
GMM is the computation of the covariance matrix.

D.4 Indirect inference estimation

Indirect inference methods have been first developed by Gouriéroux, Monfort and Renault [1993] and
Gallant and Tauchen [1996]. These methods are particularly suited for our case where the direct likelihood
function cannot be computed easily. As said previously, the statistical treatment of operational risk requires
to calibrate the probability distribution of sums of independently distributed random variables, especially the
only available data are often partially aggregated. Unfortunately, except if the probability distribution of theses
variables is assumed to be gaussian, we can never write the likelihood function in a closed-form way. As a result,
performing a maximisation of the likelihood function is hardly feasible.

The idea of the indirect inference method is rather simple. It is based on two distribution functions for the
aggregated loss distribution:
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• the “true” one denoted by F (ξ, θ) where θ is a set of parameters to be calibrated. As an example, if we
assume that individual losses follow a Log-Normal distribution, θ stands for the mean and the standard
deviation of the logarithm of the loss;

• an approximate distribution denoted by F∗ (ξ, η) where η is also a set of parameters.

Furthermore, we consider the case where:

• maximizing the true likelihood — based on F (ξ, θ) — is not feasible;

• however, one can always simulate data following this true distribution;

• maximizing the approximate distribution is always a tractable task.

This is typically the case when the distribution of ζ is Log-Normal and the approximate one of ξ is Normal.
If we denote ξ = (ξ1, .., ξT ) the set of observations (as said, some of theses observations are aggregated losses
and the others are individual losses), the algorithm is then the following one:

1. Perform a maximum likelihood scheme as if these losses ξt followed the approximate distribution. Max-
imize the approximate log-likelihood:

η̂ = arg max `? (ξ, η)

where

`? (ξ, η) =
T

∑

t=1

ln f∗ (ξt, η) (117)

2. Take a starting value θ. Simulate a set of data ξ(s) drawn from the true distribution F (ξ, θ) and maximize
the approximate log-likelihood

η̂(s) = arg max
T

∑

t=1

ln f∗
(

ξ(s)
t , η(s)

)

(118)

3. Compute

η̃ (θ) =
1
S

S
∑

s=1

η̂(s) (119)

4. Iterate steps 2 and 3 until obtaining the solution θ̂ of η̃ (θ) = η̂.

It can be shown that θ̂ is a consistent estimator of the true parameter when S grows to infinity.

Some remarks are worth noting. First, this algorithm can be greatly simplified regarding its computational
burden. Indeed, steps 2 and 3 need a maximization at each iteration. This can be overcome using Gallant and
Tauchen approach. Secondly, the closer F and F∗ are, the better θ̂ is. As a result, one may benefit from using
an approximate distribution which is not too far away from the true distribution. Thirdly, this method can be
seen as a variant of the simulated method of moments.
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