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Abstract

In this note, we show on a stylised example how one can hedge Basket
Credit Derivatives using a related family of liquid hedging products. Using
simple Non-Arbitrage arguments and results from stochastic calculus, we
prove that one can build a self-financing portfolio written on Credit Default
Swaps which replicates the payoff of a general Credit Derivative.

1 Introduction

To price more and more complex Basket Credit Derivatives academic and practitioners have
developped a wide range of model which can roughly be split into two categories: the so-
called structural (corresponding to the celebrated firm value approach to credit, see [B-R]
for an overview) or reduced-form model (see [A-W] or [SCH] for two different ways to specify
such a model; see also [GRO] and reference therein).

We work in the reduced-form model framework where the default times of the reference
entities are defined using exogenous random variables and do not have links with economical
variables. We will consider that our model is specify as soon as the joint law of the default
times is chosen. We also assume that the interest rates are deterministic which is equivalent
to assume that the reference filtration is trivial.

Despite its obvious practical interest, the Hedging of Basket Credit Derivatives has not
been intensively studied yet. There is several reasons to explain such a situation: one could
mention for instance the lack of liquid products due to the youth of the market but also the
prohibitive cost of a perfect hedging.

We nevertheless adress this issue in this paper although from a theoretical point of
view. More precisely, we shall prove that under the assumption of the existence of liquid
Credit Default Swap on each reference entity of a two-firm basket one can use them as
basic underlying to write self-financing portfolio which replicates any payoff. Our approach
provides a model-coherent way to hedge a Basket Credit Derivatives: indeed it take into
account the information about all obligors and the way it is revealed to us as time goes by.

After describing our modelling hypothesis, we prove a martingale representation theorem
that will be the key of the subsequent development. This result is then use to prove the
main result of this paper which can be expressed in the following way: under mild regularity
assumptions the reduced-form model with trivial reference filtration is complete with respect
to Credit Default Swap. We end this note with some numerical applications.

∗Acknowledgement: the authors would like to thank Nicole El Karoui for her helpful comments on a
previous version of this work.
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1.1 Modelling Default Times

There are several way to prescribe the dependency between reference entities. One may cite
Copula Models [SCH] or Credit Contagion Model [A-W]. We consider here a model on two
reference entities F1 and F2 which is specified by the choice of the joint risk-neutral law of
the default times (τ1, τ2) of the two considered firms. In other words, we suppose given a
survival function G defined by

G(t, s) = P[τ1 > t ; τ2 > s].

We made the technical assumption that this survival function is smooth and we assume
throughout this note that the instantaneous interest rates r are deterministics. Up to an
immediate change of numéraire, we may even assume that there are equal to 0. Information
avalaible at date t is modelized by the σ-field Gt generated by the random variables min(τ1, t)
and min(τ2, t). We will implicitely assume that this filtration satisfies the usual hypothesis1.

1.2 Contracts Features and Risk-Neutral Valuation

We will consider three contracts on the Credit Basket {F1, F2}: two Credit Default Swaps
and an exotic credit derivatives hereafter called CD. For sake of simplicity only2, we will
assume that: recovery rates are equal to zero (digital CDS), buyer’s margin is paid upfront
(which means at the beginning of the contract) and in case of default the covered notional
is paid at maturity. The payoff of the considered CD is given by

C1I{τ(1)≤T} + C2I{τ(2)≤T}

where (τ(1), τ(2)) is the order statistic vector of τ such that τ(1) < τ(2).
Using standard Arbitrage-Free arguments (see for instance [B-R]), one may prove that

the value (from the point of view of the protection’s buyer) at the date t of the different
contracts are given by

CDSi(t) = E[I{0<τi≤T}|Gt], (i = 1, 2),(1)

CD(t) = E
[
C1I{0<τ(1)≤T} + C2I{0<τ(2)≤T}|Gt

]
.(2)

2 Mathematical Preliminaries

In this section, we treat the mathematical part of the paper. One will find all the necessary
computation and a primer on the stochastic calculus results that are used in the sequel.

2.1 Conditional Expectation Computations

In this paragraph, we give hints about how one can compute conditional expectations of the
form E[f(τ1, τ2)|Gt]. The first step is to write that:

E[f(τ)|Gt] = 1{τ1≤t ; τ2≤t}f(τ1, τ2) + 1{τ1≤t ; τ2>t}E[f(τ)|τ1 , τ2 > t]
+ 1{τ1>t ; τ2≤t}E[f(τ)|τ1 > t , τ2] + 1{τ1>t ; τ2>t}E[f(τ)|τ1 > t , τ2 > t],

or, in other words,

E[f(τ)|Gt] = Jt(0, 0)(τ1, τ2)f(τ1, τ2) + Jt(0, 1)(τ1, τ2)E[f(τ)|τ1 , τ2 > t]
+ Jt(1, 0)(τ1, τ2)E[f(τ)|τ1 > t , τ2] + Jt(1, 1)(τ1, τ2)E[f(τ)|τ1 > t , τ2 > t],

1which are completeness and right-continuity. These hypothesis are satisfied in our case up to the addition
to each Gt of the P-negligible sets.

2as these hypothesis can easily be relaxed to reach more general cases.
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where if It(0) = [0, t], It(1) =]t,+∞[ and ε = (ε1, ε2) ∈ {0, 1}2, Jt(ε) denote the indicator
function of the set It(ε1)× It(ε2). Then, using the following computational trick

E[f(τ)|τ1 = s , τ2 > t] =
∂sE[f(τ1, τ2)1{τ1>s ; τ2>t}]

∂sP[τ1 > s ; τ2 > t]

one may easily prove that

E[f(τ)|τ1 = t, τ2 = s] = E
(
(0, 0), t, s, f

)
= f(t, s),

E[f(τ)|τ1 = s , τ2 > t] = E
(
(0, 1), t, s, f

)
=

∫∞
t

f(s, v)
(∂1G)(s,dv)
(∂1G)(s, t)

,

E[f(τ)|τ1 > t , τ2 = s] = E
(
(1, 0), t, s, f

)
=

∫∞
t

f(u, s)
(∂2G)(du, s)
(∂2G)(t, s)

,

E[f(τ)|τ1 > t , τ2 > s] = E
(
(1, 1), t, s, f

)
=

∫∞
t

∫∞
s

f(u, v)
G(du, dv)

G(t, s)
,

and finally, putting all these building blocks together, one find that

E[f(τ1, τ2)|Gt] =
∑

ε∈{0,1}2
Jt(ε)(τ)E(ε, τ ∧ t, f).

Using this result, we made other computations that are useful for numerical applications:
here are some formulas given without any proof:

CDS1(t) = I{τ1>t}

(
1− I{τ2≤t}

(∂2G)(T, τ2)
(∂2G)(t, τ2)

− I{τ2>t}
G(T, t)
G(t, t)

)
+ I{τ1≤t},

CDS2(t) = I{τ2>t}

(
1− I{τ1≤t}

(∂1G)(τ1, T )
(∂1G)(τ1, t)

− I{τ1>t}
G(t, T )
G(t, t)

)
+ I{τ2≤t},

CD(t) = C1I{τ(1)>t}

[
1− G(T, T )

G(t, t)

]
+ C2I{τ(2)>t} + C1I{τ(1)≤t}

×
[
I{τ1>t ; τ2≤t}

(
1− (∂2G)(T, τ2)

(∂2G)(t, τ2)

)
+ I{τ1≤t ; τ2>t}

(
1− (∂1G)(τ1, T )

(∂1G)(τ1, t)

)
+I{τ1>t ; τ2>t}

(
1− G(t, T ) + G(T, t)−G(T, T )

G(t, t)

)]
+ C2I{τ(2)≤t}.

2.2 Some Classical Stochastic Calculus Results

We make use in the text of some classical probabilistic results. We state them properly in
this paragraph. The full details may be found in the excellent book from Rogers & Williams
[R-W]. Let (Ω,F, P, F = (Ft)t≥0) be a complete filtered probability space satisfying the
usual conditions which means that the filtration F is complete and right-continuous. Recall
that if (Lt)t≥0 is a càdlàg3 process, we denote by ∆Lt = Lt − Lt−, the jump process of L.
In this setting, the following results are true:

Proposition 1. Let τ1, . . . , τN be N stopping times4 of the filtration F and X1, . . . , XN

be bounded (or more generally integrable) random variable such that, for all n, Xn is Fτn
5-

measurable. There is a unique F-martingale M whose jump process is equal to

t 7→ ∆
( N∑

n=1

Xn1]]0,τn]](t)
)
.

3which means right-continuous with left-limit.
4A random variable τ is a F-stopping time as soon as {τ ≤ t} is Ft-measurable for all t.
5Recall that if τ is a stopping time, Fτ is the σ-field {A ; A ∩ {τ ≤ t} ∈ Ft, ∀t}.
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Furthermore, if M i denote the unique martingale such that ∆M i = ∆I]]0,τi]], there exists
previsible6 processes Hi such that M =

∑
i

∫
Hi dM i and these processes are characterized

by the property Hi(τi) = Xi.

2.3 Martingale Representation

We prove here the main mathematical result. It appear that despite (or maybe because...)
its simplicity, we do not find any explicit statement of this result in the existing litterature.

For i = 1, 2, let M i be the unique G-martingale such that the jump processes ∆M i
t :=

M i
t −M i

t− are equal to ∆I{τi≤t}. We will make use of the following representation result:

Proposition 2. Let f be a bounded measurable function and Mf the martingale t 7→
E[f(τ)|Gt]. Then there exists a two-dimensional G-previsible process H = (Hf

1 ,Hf
2 ) such

that

Mf
t = E[f(τ)] +

∫
]0,t]

Hf (s) · dMs .(3)

Furthermore, Hf
i is the unique G-previsible process such that Hf

i (τi) = ∆Mf
τi

.

In practice, this last property is used to compute explicitly the ”hedging ratios” Hf
i . For

reason that will be clear soon, we will refer to this method of computing the Hi’s as the
jump trick .
Proof. We know that the càdlàg version of the martingale Mf is given by

Mf
t =

∑
ε∈{0,1}2

Jt(ε)(τ1, τ2)E(ε, τ1 ∧ t, τ2 ∧ t, f),

and from this equality one may deduce that

∆Mf
τ1

= I]]0,τ2]](τ1)
(
E((0, 1), τ1, τ1)− E((1, 1), τ1, τ1)

)
+ I]]τ2,+∞[[(τ1)

(
E((0, 0), τ1, τ1)− E((1, 0), τ1, τ1)

)
,

∆Mf
τ2

= I]]0,τ1]](τ2)
(
E((1, 0), τ2, τ2)− E((1, 1), τ2, τ2)

)
+ I]]τ1,+∞[[(τ2)

(
E((0, 0), τ2, τ2)− E((0, 1), τ2, τ2)

)
.

To understand these formulas, let’s consider the case where τ2 < τ1. Taking a look at
figure 1, it is very easy to convince oneself that on the event {τ2 < τ1}, one has

∆Mf
τ1

= E(0, 0)τ1,τ1 − E(1, 0)τ1,τ1 , ∆Mf
τ2,τ2

= E(1, 0)τ2,τ2 − E(1, 1)τ2,τ2 .

As the preceding equations may be rewritten as ∆Mf
τ1

= Hf
1 (τ1) and ∆Mf

τ2
= Hf

2 (τ2)
where Hf

1 and Hf
1 are the previsible processes

Hf
1 (t) = I]]0,τ2]](t)

(
E(0, 1)t,t − E(1, 1)t,t

)
+ I]]τ2,∞]](t)

(
E(0, 0)t,t − E(1, 0)t,t

)
,

Hf
2 (t) = I]]0,τ1]](t)

(
E(1, 0)t,t − E(1, 1)t,t

)
+ I]]τ1,∞]](t)

(
E(1, 0)t,t − E(1, 1)t,t

)
,

proposition 1 implies that formula (3) is true for the processes Hf
i we have just defined. �

6The previsible σ-field is generated by the continuous G-adapted process, see [R-W] or [Pro].
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Figure 1: Determination of ∆Mf
τi

, i = 1, 2 in the case τ2 < τ1.

3 Dynamic hedging

3.1 Replicating Portfolio

We now assume that the Credit Default Swap contracts are liquid and we consider a portfolio
of the form

Pt = γ1(t)CDS1(t) + γ2(t)CDS2(t) + γ3(t)cash− CD(t),

which is assumed to be self-financing in the sense that

dPt = γ1(t) dCDS1(t) + γ2(t) dCDS2(t)− dCD(t).

We will also assume that the initial value of the portfolio is zero. We aim at finding a
two-dimensionnal process γ such that the portfolio P is riskless. The representation results
we recall in section 2 allows us to rewrite the preceding equation as

dP =
(
γ1H

1
1 + γ2H

2
1 −K1

)
dM1 +

(
γ1H

1
2 + γ2H

2
2 −K2

)
dM2

= γ1H
1 · dMt + γ2H

2 · dM −K · dM ,

where Hi and K are the 2-dimensional previsible processes such that

CDSi(t) = CDSi(0) +
∫
]0,t]

Hi
s · dMs , (i = 1, 2),

CD(t) = CD(0) +
∫
]0,t]

Ks · dMs ,

and, using the jump trick , on may easily prove that, for all t ≤ T ,

H1
1 (t) = I]]0,τ2]](t)

G(T, t)
G(t, t)

+ I]]τ2,+∞[[(t)
(∂2G)(T, t)
(∂2G)(t, t)

,

H1
2 (t) = I]]0,τ1]](t)

(G(T, t)
G(t, t)

− (∂2G)(T, t)
(∂2G)(t, t)

)
,

H2
1 (t) = I]]0,τ2]](t)

(G(t, T )
G(t, t)

− (∂1G)(t, T )
(∂1G)(t, t)

)
,

H2
2 (t) = I]]0,τ1]](t)

G(t, T )
G(t, t)

+ I]]τ1,+∞[[(t)
(∂1G)(t, T )
(∂1G)(t, t)

,
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K1(t) = I]]0,τ2]](t)
(

C1
G(T, T )
G(t, t)

+ C2

[G(t, T ) + G(T, t)−G(T, T )
G(t, t)

− (∂1G)(t, T )
(∂1G)(t, t)

])
+ C2I]]τ2,+∞[[(t)

(∂2G)(T, t)
(∂2G)(t, t)

,

K2(t) = I]]0,τ1]](t)
(

C1
G(T, T )
G(t, t)

+ C2

[G(t, T ) + G(T, t)−G(T, T )
G(t, t)

− (∂2G)(T, t)
(∂2G)(t, t)

])
+ C2I]]τ1,+∞[[(t)

(∂1G)(t, T )
(∂1G)(t, T )

.

Now, we observe that our portfolio is riskless or insensitive to jump-risk7 as soon as
dP = 0 and in view of the orthogonality of the martingales M1 and M2 this is equivalent to{

γ1H
1
1 + γ2H

2
1 = K1

γ1H
1
2 + γ2H

2
2 = K2 .

In other words, the hedging ratios γ = (γ1, γ2) we are looking for are solution of the linear
system Hγ = K, where H = (Hj

i ). Following this hedging strategy, we then have for all
t ≤ T

Pt = CD(0) +
∫
]0,t]

γ1(s) dCDS1(s) +
∫
]0,t]

γ2(s) dCDS2(s)− CD(t) = 0.

In other words,

CD(t) = CD(0) +
∫
]0,t]

γ1(s) dCDS1(s) +
∫
]0,t]

γ2(s) dCDS2(s).

3.2 Numerical Applications

In this section, we apply the preceding result to a Copula Model [SCH] on two reference
entities F1 and F2. More precisely, we assume that the risk-neutral law of the default times
(τ1, τ2) of the two considered firms is such that the marginals are exponentially distributed
with rate λ1 and λ2 respectively and that the corresponding survival copula is the Clayton
copula with parameter θ > 0 (see for instance [JOE] or [RON]):

C̃(u, v; θ) =
( 1

uθ
+

1
vθ

− 1
)−1/θ

.

In other words, we will assume that

G(t, s) = C̃(e−λ1t, e−λ2t, θ) =
(
eθλ1t + eθλ2s − 1

)−1/θ
.

We introduce the following notations: T maturity, N step number, dt = T/N discretiza-
tion step, tk = k × dt, (0 ≤ k ≤ N) and we study the tracking error defined as

TE(tk) = CD(0) +
k−1∑
i=0

γ(ti) ·
(
CDS(ti+1)− CDS(ti)

)
− CD(tk).

We draw some graph associated to the following values for the parameter:

λ1 = 700bp, λ2 = 500bp, θ = 10.0
T = 10Y , Freq = 50 step per year, (weekly rebalanced portfolio)
C1 = 5%, C2 = 20%. Notional = 1.0

7we insist on the fact the only source of randomness here is τ .
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On graph 1 and graph 2, we plot the value, as time goes by, of the CDSs, the Credit
Derivatives, the Tracking Error and the Hedge Ratios. On this example there is two de-
faults: firms F1 and F2 defaulted about 3 and 7 years after inception respectively. After
the default of the corresponding firm, the value of the CDS jumps to 1 which is coherent
with formulas (1). In the same way, after the first default, the Credit Derivatives value
experienced a positive jump and after the second default its value jumps to 25% accordingly
to formula (2).

After the default of firm F1 the value of Credit Default Swap on F2 increase and this
express the positive correlation between the two default time: after the first default the
default probability of the remaining firm increases and so do the value of the corresponding
CDS. We may also observe that with our choice of payoff our products shows negative θ.

After the default of the firm F1 the corresponding hedging ratio disappear and so do
the other ratio after the second default. We verify that the tracking error decreases as
the frequency of rebalancing increases. We also plot on graph 3 the approximated loss
distribution that occur when one follows this strategy. We observe that this distribution
possess two modes: the negative one correspond to the case where there is no default and
express the fact that the θ of the portfolio is negative; the positive one correspond to the
case when there is at least one default and in this case our portfolio end with a positive
value.

We also graph the frequency histogram for the tracking error (graph 3) and the frequency
histogram in logarithmic scale (graph 4 and 5).

Figure 2: graph 1

3.3 What about the General Case?

In the general case, there is N firms (or obligors) in the basket and the situation is much
more intricate but it is quite easy to convince oneself that the same reasoning may quite
well be applied:

Firstly, one has to compute using jump trick the previsible coefficient H = (Hi
j) such
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Figure 3: graph 2

Figure 4: graph 3
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Figure 5: graph 4

Figure 6: graph 5
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that

dCDSi(t) =
∑

j

Hi
j dM j .

Secondly, and considering a complex derivatives whose price process is P , one has to compute
(jump trick again) the previsible coefficient (Kj) such that

dP =
∑

j

Kj dM j .

Then to find the hedging portfolio it suffices, in principle, to solve in γ the following system
of linear equation: Hγ = K. Of course, to be perfectly rigorous one has to prove first that
in this context this system admit a solution.

4 Conclusion

Recall that we are working in the framework of reduced-form model with deterministic
interest rate and spread and that the only crucial hypothesis is that the survival function
of the law of the default time is smooth. We present in this note some techniques that
may be use to build a self-financing portfolio which replicates the payoff of a Basket Credit
Derivatives. These techniques only use Non-arbitrage arguments and elementary stochastic
calculus (with jumps).

More precisely, we prove that under some mild regularity assumptions the market de-
scribed by our model is complete with respect to Credit Default Swap. In other words, under
our working hypothesis, one could perfectly hedge any Credit Derivatives using Credit De-
fault Swaps as basic underlying. Furthermore, we show that the corresponding hedging
ratios may be easily computed by using what we call the jump trick); we choose this name
to express the fact that these hedging ratios are completely described once one know the
amplitude of the jump involved by the choosen model.
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