Contents

Cont	ributors	xvi	
Prefa	Preface xiz		
II A	NTERACTING WITH INVESTORS AND SSET OWNERS	1	
Part	I Robo Advisors and Automated Recommendation	3	
1	Introduction to Part I. <i>Robo-advising as a Technological Platform</i> <i>for Optimization and Recommendations</i> <i>Lisa L. Huang</i>	5	
2	New Frontiers of Robo-Advising: Consumption, Saving, Debt Man- agement, and Taxes		
	Francesco D'Acunto and Alberto G. Rossi	9	
2.1	Robo-advice and the balance-sheet view of the household	9	
2.2	Robo-advising for consumption-saving choices	12	
	2.2.1 Open areas of inquiry in robo-advising for consumption-saving choices	16	
2.3	Robo-advising and durable spending choices	18	
	2.3.1 Robo-advising for housing choices	18	
	2.3.2 Robo-advising for the purchase of vehicles	19	
	2.3.3 Open areas of inquiry in robo-advising for durable spending	20	
2.4	Robo-advising and consumers' lending decisions	21	
2.5	Areas of consumer finance with a scarce presence of robo-advising	22	
	2.5.1 Robo-advising and consumer credit management	23	
	2.5.2 Robo-advising and human capital investments	25	
	2.5.3 Robo-advising and tax management	26	
2.6	E pluribus unum: Is the Holistic Robo-Advisor the future of		
	robo-advising?	27	
2.7	Conclusions	28	

vi		Со	ntents
3	Robo	-Advising: Less AI and More XAI? Augmenting Algorithms	
	with	Humans-in-the-Loop	
	Milo .	Bianchi and Marie Brière	33
3.1	Introd	luction	33
3.2	Why s	so popular?	34
	3.2.1	Fintech revolution	36
	3.2.2	Fundamental problems with investors	36
	3.2.3	Fundamental problems with advisors	37
3.3	Prom	ises	38
	3.3.1	Accountable procedures and tailored recommendations	38
	3.3.2	Make investors better off	41
	3.3.3	Reach under-served investors	42
3.4	Open	questions	43
	3.4.1	Why not more AI/big data?	43
	3.4.2	How far shall we go into personalization?	45
	3.4.3	Can humans trust robots?	47
	3.4.4	Do robots replace or complement human decisions?	51
3.5	The n	ext generation of robo-advisors	51
4	Robo	-advisory: From investing principles and algorithms to future	
	devel	opments	
	Adam	Grealish and Petter N. Kolm	60
4.1	From	investing principles to algorithms	60
	4.1.1	Client assessment and onboarding	62
	4.1.2	Implementation of the investment strategy	66
	4.1.3	Ongoing management of the investment strategy	69
4.2	Autor	nated tax management for retail investors	70
	4.2.1	Tax-loss harvesting	71
	4.2.2	Asset location	73
	4.2.3	Tax lot management	74
4.3	Invest	tor interaction	74
	4.3.1	Investor education	74
	4.3.2	Data collection and split testing	75
4.4	Expai	nding service offerings	75
	4.4.1	Goals-based investing	75
	4.4.2	Retirement planning	76
	4.4.3	Responsible investing	77
	4.4.4	Smart beta and factor investing	78
	4.4.5	Risk parity	79
	4.4.6	User-defined portfolios	79
4.5	4.4.7	Cash management	80
4.5	Concl	lusion	81
5	Reco	mmender Systems for Corporate Bond Trading	
	Domi	nic Wright, Artur Henrykowski, Jacky Lee and Luca Capriotti	86
5.1	Introc	luction	86
5.2	Bond	recommender systems	87
	5.2.1	Content-based filtering	88
	5.2.2	Collaborative filtering	90

Cont	ents	vii
5.3	Testing 5.3.1 Hyperparameter optimization	93 94 04
5 1	5.5.2 Testing resources detions	94
5.4 5.5	Conclusions	93
5.5	Conclusions	90
Part	t II How Learned Flows Form Prices	99
6	Introduction to Part II. <i>Price Impact: Information Revelation or Self-Fulfilling Prophecies?</i>	
	Jean-Philippe Bouchaud	101
6.1	Liquidity hide-and-seek	101
6.2	Information efficiency vs. statistical efficiency	102
6.3	Price "Discovery" vs. price "formation"	104
_		
7	Order Flow and Price Formation	107
71	Fullition	107
7.1	The limit order book	107
73	Modeling approaches	110
7.4	Order flow	115
7.5	Cross impact	117
7.6	Market impact of metaorders	119
7.7	Co-impact	124
7.8	Conclusion	127
8	Price Formation and Learning in Equilibrium under Asymmetric	
0	Information	
	Umut Çetin	130
8.1	Introduction	130
8.2	The Kyle model	131
	8.2.1 A toy example	131
	8.2.2 The Kyle model in continuous time	133
8.3	The static Kyle equilibrium	137
8.4	The static Kyle model with multiple insiders	141
8.5	Dynamic Kyle equilibrium	143
8.6	The Kyle model and default risk	144
8.7	Glosten–Milgrom model	146
8.8	Risk aversion of market makers	147
8.9	Conclusion and further remarks	149
9	Deciphering How Investors' Daily Flows are Forming Prices	
. ·	Daniel Giamouridis, Georgios V. Papaioannou and Brice Rosenzweig	153
9.1	Introduction	153
9.2	Data description and exploratory statistics	156
9.3	Nodeling and methodology	160
9.4	Empirical results	162

viii		Contents
	9.4.1 Aggregate flow and price formation	162
	9.4.2 Participant type flow imbalance and price formation	163
	9.4.3 Co-Impact	168
9.5	Summary and Conclusions	169
Т	OWARDS BETTER RISK INTERMEDIATION	173
Part	III High Frequency Finance	175
10	Introduction to Part III	
	Robert Almgren	177
10.1	Chapters in this Part	177
10.2	State of the field and future prospects	179
	10.2.1 Data needs and simulation	179
	10.2.2 Game formulation	180
	10.2.3 Conclusion	181
11	Reinforcement Learning Methods in Algorithmic Trading	
	Olivier Guéant	182
11.1	Introduction	182
	11.1.1 The recent successes of reinforcement learning	182
	11.1.2 Finance, it might be your go	183
11.2	A brief introduction to reinforcement learning	184
	11.2.1 Markov Decision Processes and optimization problems	185
	11.2.2 Basic concepts	186
	11.2.3 Main RL methods	188
11.3	Finance is not a game	192
	11.3.1 States and actions	192
	11.3.2 The role of models	192
	11.3.3 The question of risk	194
	11.3.4 The question of time steps	194
11.4	A review of existing works	194
	11.4.1 Statistical arbitrage	195
	11.4.2 Optimal execution	196
	11.4.3 Market making	198
11.5	Conclusion and perspectives for the future	199
12	Stochastic Approximation Applied to Optimal Execution: Learnin	ng
	Sonhie Laruelle	205
12.1	Introduction	205
12.1	Stochastic approximation: results on a s_convergence and its rate	205
1 4.4	12.2.1 Back to deterministic recursive methods	207
	12.2.1 Stochastic recursive methods	207
123	Applications to optimal execution	200
12.5	12.3.1 Optimal split of an order across liquidity pools	210
	12.3.2 Optimal posting price of limit orders	210
	12.5.2 Optimier posting price of minit orders	<i>22</i> 1

Conte	ents	ix
13	Reinforcement Learning for Algorithmic Trading	
10	Álvaro Cartea. Sebastian Jaimungal and	
	Leandro Sánchez-Betancourt	230
13.1	Learning in financial markets	230
13.2	Statistical arbitrage: trading an FX triplet	232
	13.2.1 Market model	234
13.3	The reinforcement learning paradigm	235
	13.3.1 Deep Q-learning (DQN)	237
	13.3.2 Reinforced deep Markov models	239
	13.3.3 Implementation of RDMM	244
13.4	Optimal trading in triplet	245
	13.4.1 Remarks on RDMM versus DDQN	248
13.5	Conclusions and future work	249
Part	IV Advanced Optimization Techniques	251
14	Introduction to Part IV. Advanced Optimization Techniques for Banks	
	ana Asset Managers David Bilahan, Matthew E. Divan and Joan Halparin	252
1/1	Introduction	255
14.1	14.1.1 Pelger's asset pricing model	255
14.2	Data wins the center stage	259
11.2	14.2.1 Deep hedging vs. reinforcement learning for option pricing	259
	14.2.2 Market simulators	261
14.3	Stratified models for portfolio construction	262
14.4	Summary	263
15	Harnessing Quantitative Finance by Data-Centric Methods	
	Blanka Horvath, Aitor Muguruza Gonzalez and Mikko S. Pakkanen	265
15.1	Data-centric methods in quantitative finance	265
15.2	Pricing and calibration by supervised learning	269
	15.2.1 Model calibration framework	269
	15.2.2 Pricing and calibration aided by deep neural networks	270
	15.2.3 An example where deep pricing makes a difference: the rough	
	Bergomi model	272
	15.2.4 Choosing the feature set	273
	15.2.5 Supervised learning approaches, and their ability to loosen limitations	
15.0	of the tractability mantra	274
15.3	Pricing and hedging by unsupervised deep learning	275
	15.3.1 Deep nedging	213
	15.3.2 Utility multicience pricing	∠10 270
15 <i>A</i>	Market generators	219
13.4	15.4.1 The case for more flexible data-driven market models	285
	15.4.2. The case for classical models	288
	15.4.3 Synergies between the classical and modern approaches, and further	_00
	risk management considerations	288
15.5	Outlook and challenges with data at centre stage	288

х		Contents
16	Asset Pricing and Investment with Rig Data	
10	Asset I field and investment with Dig Data	203
16.1	Murkus I eiger	293
10.1	Overview N	295
16.2	No-arbitrage pricing and investment	294
16.3	Factor models	296
16.4	Deep learning in asset pricing	300
	16.4.1 Forecasting	300
	16.4.2 No-arbitrage model	301
	16.4.3 Economic dynamics	303
	16.4.4 Model architecture	305
	16.4.5 Empirical results	305
16.5	Decision trees in asset pricing	308
	16.5.1 SDF recovery as a mean-variance optimization problem	310
	16.5.2 Empirical results	312
16.6	Directions for future research	314
17	Portfolio Construction Using Stratified Models	
	Ionathan Tuck, Shane Barratt and Stephen Boyd	317
17.1	Introduction	317
1,111	17.1.1 Related work	319
172	Lanlacian regularized stratified models	319
17.2	Dataset	320
17.5	Stratified market conditions	320
17.4	Stratified raturn model	322
17.5	17.5.1 Huper perspector coerch	324
	17.5.1 Fiyper-parameter search	324
176	Structified rich model	225
17.0	Suamed fisk model	320
	17.6.1 Hyper-parameter search	227
177	Trading galies and healtest	220
1/./	Irading policy and backtest	328
	17.7.1 Irading policy	328
	17.7.2 Backtests	330
	17.7.3 Hyper-parameter selection	222
17.0	17.7.4 Final trading policy results	332 225
17.8	Extensions and variations	333
17.9	Conclusions	337
D.	V Nor Franking for Starley (* Contraling)	~
Part	iv New Frontiers for Stochastic Control in Finance	341
18	Introduction to Part V. Machine Learning and Applied Mathematic	cs:
	a Game of Hide-and-Seek?	
	Gilles Pagès	343
19	The Curse of Optimality, and How to Break it?	
-	Xun Yu Zhou	354
191	Introduction	354
19.2	Entropy-regularized exploratory formulation	357
17.4	19.2.1 Classical stochastic control	357
		001

Conte	ents	xi
19.3 19.4	19.2.2 Exploratory formulation19.2.3 Entropy regularizationOptimal distributional policiesNon-convex optimization and Langevin diffusions	359 360 361 363
19.5	Algorithmic considerations for RL	365
19.6	Conclusion	367
20	Deep Learning for Mean Field Games and Mean Field Control with Applications to Finance	
20.1	René Carmona and Mathieu Laurière	369
20.1	Introduction	369
	20.1.2 Definition of the problems	370
20.2	20.1.2 Definition of the problems	372
20.2	20.2.1 Description of the method	374
	20.2.1 Description of the method	376
20.3	Deep BSDE method for MKV FBSDEs	379
20.0	20.3.1 Description of the method	379
	20.3.2 Numerical illustration: a toy model of systemic risk	381
20.4	DGM method for mean field PDEs	382
	20.4.1 Description of the method	383
	20.4.2 Numerical illustration: a crowded trade model	386
20.5	Conclusion	389
21	Reinforcement Learning for Mean Field Games, with Applications to Economics	
21	Reinforcement Learning for Mean Field Games, with Applications to Economics Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière	393
21 21.1	Reinforcement Learning for Mean Field Games, with Applications to Economics <i>Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière</i> Introduction	393 393
21 21.1 21.2	Reinforcement Learning for Mean Field Games, with Applications to Economics <i>Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière</i> Introduction Finite horizon mean field problems	393 393 396
21 21.1 21.2	Reinforcement Learning for Mean Field Games, with Applications to Economics <i>Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière</i> Introduction Finite horizon mean field problems 21.2.1 Mean field games	393 393 396 397
21 21.1 21.2	Reinforcement Learning for Mean Field Games, with Applications to Economics <i>Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière</i> Introduction Finite horizon mean field problems 21.2.1 Mean field games 21.2.2 Mean field control	393 393 396 397 397
2121.121.221.3	Reinforcement Learning for Mean Field Games, with Applications to Economics <i>Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière</i> Introduction Finite horizon mean field problems 21.2.1 Mean field games 21.2.2 Mean field control Two-timescale approach	393 393 396 397 397 398
21 21.1 21.2 21.3	Reinforcement Learning for Mean Field Games, with Applications to Economics <i>Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière</i> Introduction Finite horizon mean field problems 21.2.1 Mean field games 21.2.2 Mean field control Two-timescale approach 21.3.1 Discrete formulation	393 393 396 397 397 398 398
21 21.1 21.2 21.3	Reinforcement Learning for Mean Field Games, with Applications to Economics <i>Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière</i> Introduction Finite horizon mean field problems 21.2.1 Mean field games 21.2.2 Mean field control Two-timescale approach 21.3.1 Discrete formulation 21.3.2 Action-value function	 393 393 396 397 398 398 400 401
21 21.1 21.2 21.3 21.4	Reinforcement Learning for Mean Field Games, with Applications to Economics Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière Introduction Finite horizon mean field problems 21.2.1 Mean field games 21.2.2 Mean field control Two-timescale approach 21.3.1 Discrete formulation 21.3.2 Action-value function 21.3.3 Unification through a two-timescale approach	 393 393 396 397 398 398 400 401 404
 21 21.1 21.2 21.3 21.4 	Reinforcement Learning for Mean Field Games, with Applicationsto EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1Mean field games21.2.2Mean field controlTwo-timescale approach21.3.1Discrete formulation21.3.2Action-value function21.3.3Unification through a two-timescale approachReinforcement learning algorithm21.4.1Date to the provide the provident the provid	 393 393 396 397 398 398 400 401 404 404
 21 21.1 21.2 21.3 21.4 	Reinforcement Learning for Mean Field Games, with Applicationsto EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1Mean field games21.2.2Mean field controlTwo-timescale approach21.3.1Discrete formulation21.3.2Action-value function21.3.3Unification through a two-timescale approachReinforcement learning algorithm21.4.1Reinforcement learning21.4.2Alegreithm	 393 393 396 397 398 398 400 401 404 404 404
 21 21.1 21.2 21.3 21.4 	Reinforcement Learning for Mean Field Games, with Applications to Economics Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière Introduction Finite horizon mean field problems 21.2.1 Mean field games 21.2.2 Mean field control Two-timescale approach 21.3.1 Discrete formulation 21.3.2 Action-value function 21.3.3 Unification through a two-timescale approach Reinforcement learning algorithm 21.4.1 Reinforcement learning 21.4.2 Algorithm 21.4.3 Learning rates	 393 393 396 397 397 398 398 400 401 404 404 404 404 406
 21 21.1 21.2 21.3 21.4 	Reinforcement Learning for Mean Field Games, with Applications to EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1Mean field games21.2.2Mean field controlTwo-timescale approach21.3.1Discrete formulation21.3.2Action-value function21.3.3Unification through a two-timescale approachReinforcement learning algorithm21.4.1Reinforcement learning21.4.2Algorithm21.4.3Learning rates21.4.4Application to continuous problems	 393 393 396 397 397 398 398 400 401 404 404 404 406 407
 21 21.1 21.2 21.3 21.4 21.5 	Reinforcement Learning for Mean Field Games, with Applicationsto EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1Mean field games21.2.2Mean field controlTwo-timescale approach21.3.1Discrete formulation21.3.2Action-value function21.3.3Unification through a two-timescale approachReinforcement learning algorithm21.4.1Reinforcement learning21.4.2Algorithm21.4.4Application to continuous problemsA mean field accumulation problem	 393 393 396 397 398 398 400 401 404 404 404 406 407 407
 21 21.1 21.2 21.3 21.4 21.5 	Reinforcement Learning for Mean Field Games, with Applications to EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1 Mean field games21.2.2 Mean field controlTwo-timescale approach21.3.1 Discrete formulation21.3.2 Action-value function21.3.3 Unification through a two-timescale approachReinforcement learning algorithm21.4.1 Reinforcement learning21.4.2 Algorithm21.4.3 Learning rates21.4.4 Application to continuous problemsA mean field accumulation problem21.5.1 Description of the problem	 393 393 396 397 398 398 400 401 404 404 404 406 407 407 407 407
 21 21.1 21.2 21.3 21.4 21.5 	Reinforcement Learning for Mean Field Games, with Applications to EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1 Mean field games21.2.2 Mean field controlTwo-timescale approach21.3.1 Discrete formulation21.3.2 Action-value function21.3.3 Unification through a two-timescale approachReinforcement learning algorithm21.4.1 Reinforcement learning21.4.2 Algorithm21.4.3 Learning rates21.4.4 Application to continuous problemsA mean field accumulation problem21.5.1 Description of the problem21.5.2 Solution of the MFG	 393 393 396 397 398 398 400 401 404 404 404 404 406 407 407 407 409
 21 21.1 21.2 21.3 21.4 21.5 	Reinforcement Learning for Mean Field Games, with Applications to EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1 Mean field games21.2.2 Mean field controlTwo-timescale approach21.3.1 Discrete formulation21.3.2 Action-value function21.3.3 Unification through a two-timescale approach21.4.1 Reinforcement learning algorithm21.4.2 Algorithm21.4.3 Learning rates21.4.4 Application to continuous problemsA mean field accumulation problem21.5.1 Description of the problem21.5.2 Solution of the MFG21.5.3 Solution of the MFC	 393 393 396 397 398 398 400 401 404 404 404 406 407 407 407 409 410
 21 21.1 21.2 21.3 21.4 21.5 	Reinforcement Learning for Mean Field Games, with Applications to EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1 Mean field games21.2.2 Mean field controlTwo-timescale approach21.3.1 Discrete formulation21.3.2 Action-value function21.3.3 Unification through a two-timescale approachReinforcement learning algorithm21.4.1 Reinforcement learning21.4.2 Algorithm21.4.3 Learning rates21.4.4 Application to continuous problemsA mean field accumulation problem21.5.1 Description of the problem21.5.2 Solution of the MFG21.5.4 Numerical results	 393 393 396 397 398 398 400 401 404 404 404 404 406 407 407 407 409 410 411
 21 21.1 21.2 21.3 21.4 21.5 21.6 	Reinforcement Learning for Mean Field Games, with Applications to EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1 Mean field games21.2.2 Mean field controlTwo-timescale approach21.3.1 Discrete formulation21.3.2 Action-value function21.3.3 Unification through a two-timescale approachReinforcement learning algorithm21.4.1 Reinforcement learning21.4.2 Algorithm21.4.3 Learning rates21.4.4 Application to continuous problemsA mean field accumulation problem21.5.1 Description of the problem21.5.2 Solution of the MFG21.5.3 Solution of the MFC21.5.4 Numerical resultsA mean field execution problem	 393 393 396 397 398 398 400 401 404 404 404 404 406 407 407 407 409 410 411 413
 21 21.1 21.2 21.3 21.4 21.5 21.6 	Reinforcement Learning for Mean Field Games, with Applications to EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1 Mean field games21.2.2 Mean field controlTwo-timescale approach21.3.1 Discrete formulation21.3.2 Action-value function21.3.3 Unification through a two-timescale approachReinforcement learning algorithm21.4.1 Reinforcement learning21.4.2 Algorithm21.4.3 Learning rates21.4.4 Application to continuous problemsA mean field accumulation problem21.5.1 Description of the problem21.5.2 Solution of the MFG21.5.3 Solution of the MFC21.5.4 Numerical resultsA mean field execution problem21.5.1 The MFG trader problem	 393 393 396 397 398 398 400 401 404 404 404 404 406 407 407 407 409 410 411 413 415
 21 21.1 21.2 21.3 21.4 21.5 21.6 	Reinforcement Learning for Mean Field Games, with Applications to EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1Mean field games21.2.2Mean field controlTwo-timescale approach21.3.1Discrete formulation21.3.2Action-value function21.3.3Unification through a two-timescale approachReinforcement learning algorithm21.4.1Reinforcement learning21.4.2Algorithm21.4.3Learning rates21.4.4Application to continuous problemsA mean field accumulation problem21.5.1Description of the problem21.5.2Solution of the MFG21.5.3Solution of the MFC21.5.4Numerical resultsA mean field execution problem21.6.1The MFG trader problem21.6.2Solution of the MFG problem	 393 393 396 397 398 398 400 401 404 404 404 406 407 407 407 407 409 410 411 413 415 416

xii	Con	itents
	21.6.4 Solution of the MEC problem	417
	21.0.4 Solution of the Wire problem	418
21.7	Conclusion	421
21.7	conclusion	721
22	Neural Networks-Based Algorithms for Stochastic Control and PDEs	
	in Finance	
	Maximilien Germain, Huyên Pham and Xavier Warin	426
22.1	Breakthrough in the resolution of high-dimensional nonlinear problems	426
22.2	Deep learning approach to stochastic control	427
	22.2.1 Global approach	428
	22.2.2 Backward dynamic programming approach	429
22.3	Machine learning algorithms for nonlinear PDEs	430
	22.3.1 Deterministic approach by neural networks	431
	22.3.2 Probabilistic approach by neural networks	432
	22.3.3 Case of fully nonlinear PDEs	436
22.4	22.3.4 Limitations of the machine learning approach	440
22.4	Numerical applications	440
	22.4.1 Numerical tests on credit valuation adjustment pricing	441
22.5	22.4.2 Portfolio allocation in stochastic volatility models	443
22.5	Extensions and perspectives	448
23	Generative Adversarial Networks: Some Analytical Perspectives	
	Haovang Cao and Xin Guo	453
23.1	Introduction	453
23.2	Basics of GANs: an analytical view	455
23.3	GANs Training	460
23.4	Applications of GANs	467
	23.4.1 Computing MFGs via GANs	467
	23.4.2 GANs in Mathematical Finance	471
23.5	Conclusion and Discussion	475
0	ONNECTIONS WITH THE DEAL ECONOMY	170
U	ONNECTIONS WITH THE REAL ECONOMY	479
Part	VI Nowcasting with Alternative Data	481
24	Introduction to Part VI Nowcasting is Coming	
	Michael Recce	483
24.1	Micro before macro	483
24.2	Advance driven by Moore's law	484
24.3	The CEO dashboard	485
24.4	Internet companies led progress in nowcasting	486
24.5	CEO dashboard from alternative data	486
24.6	Nowcasting with alternative data	487
	0	÷.

Со	ntents	xiii
25	Data Preselection in Machine Learning Methods: An Application to Macroeconomic Nowcasting with Google Search Data	
	Laurent Ferrara and Anna Simoni	490
25.	1 Introduction	490
25.	2 Structure of Google search database	493
25.	3 The nowcasting approach	494
	25.3.1 Linear Bridge equation	494
	25.3.2 Preselection of Google search variables	495
25.	4 Factor models	496
25.	5 Methods based on regularisation: Ridge	499
25.	6 Nowcasting euro area GDP growth: Empirical eesults	500
25.	7 Conclusions	505
26	Alternative data and ML for macro nowcasting	
	Apurv Jain	507
26.	1 The fundamental problems of macro data	507
26.	2 High-dimensionality problem	510
26.	3 Nowcasting the big and jagged data	512
	26.3.1 Nonlinearity and ML for nowcasting	516
26.	4 Dimensions of alternative data quality	519
	26.4.1 A crowd-sourced experiment	519
	26.4.2 The need for a hypothesis	519
26.	5 Non-farm payrolls and web search case study	522
	26.5.1 Background and related work	522
	26.5.2 Government non-farm payrolls data overview	526
	26.5.3 Information content of NFP revisions	528
	26.5.4 Web search data	530
	26.5.5 Search and NFP correlation	531
	26.5.6 Regression results	533
	26.5.7 Robustness	535
26	26.5.8 Machine learning for NFP revisions	536
26.	6 Conclusion and future work	538
27	Nowcasting Corporate Financials and Consumer Baskets with Al-	
	ternative Data Michael Eleden and Demonst Shah	515
27	Michael Fleder and Devavrai Snan	545
27.	1 Quant for all data	540
27.	2 Nowcasting company linancials	547
	27.2.1 Problem statement and model	547
	27.2.2 Contributions	551
	27.2.5 Theoretical results	552
77	27.2.4 Experiments 3 Inferring products in anonymized transactions	554
21.	27.3.1 Problem statement and model	554
	27.3.1 Fromerin statement and model	554
	27.3.2 Contributions	556
	27.3.4 Main results	557
	27.3.5 Experiments	558
27	4 Conclusion	561
27	5 Relevant literature	561
<i></i> ,		201

xiv	Co	ntents
28	NLP in Finance	
	Prabhanjan Kambadur, Gideon Mann and Amanda Stent	563
28.1	Core NLP techniques	564
	28.1.1 Basic language analytics	565
• • •	28.1.2 Higher-level linguistic analysis	566
28.2	Mathematics for NLP	568
	28.2.1 Introduction to supervised learning	569
20.2	28.2.2 Machine learning methods for NLP	5/1
28.3	Applications	575
	28.3.1 Information extraction	5/0
	28.3.2 NSTM: Identifying key themes in news	580
28.4	28.3.3 Market sentiment analysis Conclusion	584 586
		000
29	The Exploitation of Recurrent Satellite Imaging for the Fine-Scale Observation of Human Activity	
	Carlo de Franchis. Sébastien Drouver. Gabriele Facciolo. Rafael	
	Grompone von Gioi, Charles Hessel and Jean-Michel Morel	593
29.1	Introduction	593
29.2	What is recurrent satellite imaging?	594
	29.2.1 A landscape of satellites images	595
29.3	3D monitoring from space	599
29.4	The SAR revolution of oil storage	604
	29.4.1 Overview	605
	29.4.2 Detailed description	605
29.5	Creating a movie of the earth	610
	29.5.1 Overview of the existing methods	610
	29.5.2 Algorithms	612
29.6	Ground visibility and cloud detection	613
29.7	Detecting and counting cars from space	616
	29.7.1 Vehicle detection on high resolution satellite images	618
	29.7.2 Parking occupancy estimation on PlanetScope satellite images	620
Part	VII Biases and Model Risks of Data-Driven Learning	629
30	Introduction to Part VII Towards the Ideal Mir between Data and	
50	Models	
	Mathieu Rosenbaum	631
30.1	What are we exactly talking about?	631
30.2	What is a good model?	631
30.3	Simulating what has never been observed	632
30.4	Being pragmatic	632
31	Generative Pricing Model Complexity: The Case for Volatility- Managed Portfolios	
	Brian Clark, Akhtar Siddique and Majeed Simaan	634
31.1	Introduction	634
31.2	Quantifying model complexity	640
	31.2.1 The main idea	640

Contents		
	31.2.2 ALE functions	640
	31.2.3 Interaction strength (IAS)	642
	31.2.4 Main effect complexity (MEC)	644
31.3	Portfolio problem	647
	31.3.1 Volatility managed portfolio	647
	31.3.2 The appeal of ML in portfolio	648
31.4	Empirical investigation	649
	31.4.1 Data	649
	31.4.2 Training and testing	650
	31.4.3 Performance	651
	31.4.4 Results and discussion	652
	31.4.5 Additional results	654
31.5	Concluding remarks	657
32	Bayesian Deep Fundamental Factor Models	
	Matthew F. Dixon and Nicholas G. Polson	661
32.1	Introduction	661
	32.1.1 Why Bayesian deep learning?	662
	32.1.2 Connection with fundamental factor models	663
	32.1.3 Overview	664
32.2	Barra fundamental factor models	665
	32.2.1 Prediction with the Barra model	666
32.3	Bayesian deep learning	667
	32.3.1 Deep probabilistic models	667
	32.3.2 Variational Approximation	669
	32.3.3 Bayes by backprop	670
32.4	Bayesian deep fundamental factor models	671
	32.4.1 Probabilistic prediction	671
32.5	Deep network interpretability	672
	32.5.1 Factor sensitivities	673
32.6	Applications: Russell 1000-factor modeling	675
32.7	Discussion	680
32.A	Appendix: Gradients of two-layer feedforward networks	684
32.B	Description of Russell 1000-factor model	685
33	Black-Box Model Risk in Finance	
	Samuel N. Cohen, Derek Snow and Lukasz Szpruch	687
33.1	Introduction	687
33.2	A practical application of machine learning	689
	33.2.1 How to use neural networks for derivative modelling	689
	33.2.2 Black-box trade-offs	692
33.3	The role of data	693
	33.3.1 Data risks	693
	33.3.2 Data solutions	695
33.4	The role of models	699
	33.4.1 Model risks	699
	33.4.2 Model solutions	705
. -		_
Index		718